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We present a comprehensive theoretical investigation of the light absorption rate at a Pb=Geð111Þ �
�

ffiffiffi
3

p � ffiffiffi
3

p
R30� surface with strong spin-orbit coupling. Our calculations show that electron spin-flip

transitions cause as much as 6% of the total light absorption, representing 1 order of magnitude

enhancement over Rashba-like systems. Thus, we demonstrate that a substantial part of the light

irradiating this nominally nonmagnetic surface is attenuated in spin-flip processes. Remarkably, the

spin-flip transition probability is structured in well-defined hot spots within the Brillouin zone, where the

electron spin experiences a sudden 90� rotation. This mechanism offers the possibility of an experimental

approach to the spin-orbit phenomena by optical means.
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Understanding electron spin transport and spin relaxa-
tion in quasi-two-dimensional (2D) systems is of capital
importance due to both fundamental reasons and the
potential technological applications. The spin-orbit (SO)
interaction is the most prominent relativistic effect leading
to the fascinating phenomena recently observed in 2D
systems, such as the quantum spin Hall effect [1,2]. An
experimentally accessible spin degree of freedom offers a
new route for the emergent field of spintronics, where the
main features of charge dynamics are strongly influenced
by the spin-related effects [3,4]. The technical possibility
of spin manipulation and control by means of an applied
bias voltage is strongly supported by recent investigations
on a variety of semiconducting alloy samples [5–7].

However, a strong SO coupling cannot be achieved in
conventional semiconductors where the spin splitting of
conduction electrons is limited to a few meV at most. In
contrast, the relativistic effects completely dominate the
electronic structure of many heavy-element surface materi-
als and overlayers [8]. The reason lies in the breaking up of
the inversion symmetry and the associated gradient of the
effective one-electron potential introduced at the interface.
These effects lead to extraordinarily large (100–500 meV)
spin splittings among the so-called Shockley-type surface
states, as it was first observed in the free electron-like
Au(111) noble metal surface [9]. This system is regarded
as a prototype of the standard Rashba model [10,11].
Considering the general form of the SO interaction in the
nonrelativistic limit,

Ĥ SO ¼ � @e

4m2c2
�̂ � ðk� rVðrÞÞ; (1)

the Rashba SO coupling is recovered by taking the gradient
of the effective one-electron potential VðrÞ as a constant
and completely surface perpendicular. This model produces
an entirely isotropic result, with a simple linear spin splitting
of the two spin sub-bands with chiral spin polarization.
However, many heavy-element adlayer or even clean sur-
face materials, such as Bi(110) [12], 1� 1H=Wð110Þ [13],
Au=Sið557Þ [14], Bi=Sið111Þ [15,16], or Tl=Sið111Þ
[17–19], exhibit large anisotropic SO interaction, inducing
complex spin textures that considerably deviate from the
free electronlike picture of the Rashba model.
In this Letter, we investigate electrically induced spin-flip

excitations on the Pb=Geð111Þ � �
ffiffiffi
3

p � ffiffiffi
3

p
R30� surface

(
ffiffiffi
3

p
Pb=Geð111Þ), considering the full spinor structure of the

electron states within the ab initio density functional theory.

The goal is to understand and quantify the striking mecha-

nism leading to spin-flip transitions out of a purely electric

perturbation in a nonmagnetic material. This system

presents two well-defined spin-split surface states crossing

the Fermi level, while the bulk substrate remains semicon-

ducting. Thus, we face a problem involving a completely

spin-polarized 2D electron gas that is essentially decoupled

from the bulk, i.e., an optimum scenario for studying surface

spin-flip transitions [20]. It is noteworthy that the strength of

the SO interaction associated to the Pb atoms is 2 orders of

magnitude larger (� 300 meV) than in semiconductor

quantum wells. Moreover, the Pb overlayer includes strong

anisotropic gradients in the surface ionic potential, giving

rise to a fast variation of the noncollinear spin polarization in

momentum space, which critically enhances the spin-flip

transition probability.
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The spinmanipulation in 2D systems [21] is accessible via
the electric-dipole spin resonancemechanism,which couples
the spin-dependent electron velocity to externally applied
fields [22]. At surfaces, the different spin-split sub-bands
are connected through interband transitions that flip the
electron spin [23]. A detailed analysis of these processes
will provide valuable information on the spin dynamics of
the system, thusmaking the first-principles approach impera-
tive. Simplified tight-binding Rashba-like models, although
very useful for understanding the basic physics [24], appear
to be not realistic enough to account for the material-specific
details that determine electromagnetic responses.

Let us consider the interaction of an electron with an
external time-dependent electric field of frequency !.
Within the electric dipole approximation valid for a small
momentum transfer q ! 0, the interaction Hamiltonian is
given by [22,23]

ĤintðtÞ ¼ � e

c
v̂ �AextðtÞ; (2)

where AextðtÞ ¼ A0 cos!t is the external vector potential
associated to the electric field EextðtÞ ¼ E0 sin!t with
E0 ¼ A0!=c, and v̂ is the electron velocity operator. In
systems with SO coupling, besides the canonical contribu-
tion p̂=m, the velocity operator includes an additional spin-
dependent term that emerges as the main factor responsible
for spin-flip transitions [23].

Within the first-order perturbation theory, the transition
rate associated to spin-flip excitations between spin-split
surface states S and S0 due to photon absorption (term
A0e

�i!�t=2) can be derived from the Fermi golden rule,

�SS0 ð!Þ ¼ 2�

@

Z
SBZ

ðfð�SkÞ � fð�S0kÞÞjMSS0 ðkÞj2

� �ð�Sk � �S0k � @!Þ d2k

ð2�Þ2 : (3)

The integral is taken over the surface Brillouin zone,
fð�i;kÞ and �i;k represent the Fermi-Dirac distribution

and a surface state eigenvalue, respectively, and MSS0 ðkÞ
is the interband matrix element

MSS0 ðkÞ ¼ � eA0

2c
� h�Skjv̂j�S0ki: (4)

As shown above, �ikðrÞ denotes the single-particle Bloch
spinor wave function associated to a surface state.

Because of the inherent phase indeterminacy of the
Bloch states in k-space, the matrix elements of the velocity
operator require a special treatment [25]. Following the
approach presented in Ref. [26], we expressed MSS0 ðkÞ in
Eq. (4) in terms of the so-called maximally localized
Wannier functions [27]. In this way, the matrix elements
entering Eq. (3) are maximally smooth and thus suitable
for any interpolation procedure within the Brillouin
zone. The Wannier functions were generated considering
the entire structure of ab initio spinor wave functions
obtained within the noncollinear DFT formalism [28–30].

The exchange-correlation energy was approximated using
standard LDA-PZ parametrization [31] and the 2� 2
norm-conserving fully relativistic pseudopotential ap-
proach [30,32]. The ground-state self-consistent cycle
was performed considering the usual Monckhorst-Pack
mesh corresponding to a 27� 27 grid. We employed a
very fine 200� 200 mesh, considering the standard
Wannier interpolation procedure for all the ingredients
entering Eq. (3) [26,27], in order to reliably account for
the details close to the Fermi level [26].

Figure 1 shows the
ffiffiffi
3

p
Pb=Geð111Þ surface (Fig. 1),

which was simulated using a repeated slab technique con-
taining 14 Ge layers. The Pb monolayer was included only
in one side of the slab, while the other (bare) Ge(111)
surface was covered by a hydrogen adlayer in order to
saturate the dangling bonds. We also analyzed the Au(111)
metal surface, considering a 22 Au layer slab. In both
systems, a full geometry optimization was performed until
all the atomic forces exerted on individual atoms were
negligibly small (< 10�4 Ry a:u:�1).
Figure 2 shows the calculated band structure of the

Pb=Geð111Þ ffiffiffi
3

p
surface. While a scalar relativistic calcu-

lation shows a single spin-degenerate surface band cross-
ing the Fermi level, fully relativistic calculations present
two spin-polarized surface bands, labeled as S and S0. SO
interaction has a huge impact on the electron structure
close to the the Fermi level, such that this term cannot be
treated perturbatively. Its contribution is even more impor-
tant than some nonrelativistic DFT terms such as the
exchange-correlation energy. In this context, the SO inter-
action completely determines the metallic character of
the S and S0 surface states. These exist as surface states

only outside the area close to the � point, where S and S0
become resonances entering the bulk projection (contin-
uum in Fig. 2). Outside this region, the splitting is in
overall of the order of 100 meV, reaching a maximum of
300 meV near the high symmetry point M. The calculated

FIG. 1 (color online). Top view of the
ffiffiffi
3

p
Pb=Geð111Þ surface

[35]. The small (gray) spheres symbolize the Ge substrate layers,
whereas the big (green) spheres represent the Pb surface mono-
layer. The solid (red) parallelogram indicates surface unit cell.
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Fermi wave vectors along the high symmetry direction

�M , kSF ’ 0:41 �A�1 and kS
0

F ’ 0:37 �A�1 are in very
good agreement with recent angle-resolved photoemission

spectroscopy experiments reporting kSF ¼ 0:40 �A�1 and

kS
0

F ¼ 0:36 �A�1 [20].
A characteristic feature emerging from the SO inter-

action at surfaces is the momentum-dependent spin
polarization,

m nðkÞ ¼
Z

��
nkðrÞ�̂�nkðrÞd3r; (5)

where n is the band index. In Figs. 3(a) and 3(b) we
present the calculated spin polarization for the S and S0
surface states in the entire Brillouin zone. These figures

demonstrate that the S and S0 states are spin polarized in
almost the opposite direction, in agreement with recent
spin-resolved angle-resolved photoemission spectroscopy
measurements [20]. The negligible spin polarization ob-

served around � is consistent with the overlap of the
surface bands with the bulk projection (see Fig. 2). In
this area, the electron states become resonances with a
large penetration; thus, any surface effect such as the
enhancement of the SO interaction is almost completely
absent.
The anisotropic character of the SO interaction is

evidenced by the highly noncollinear structure of the
calculated spin polarization for S and S0. On one hand,
we observe that the spin of each surface state is mainly
polarized along the surface perpendicular direction, a phe-
nomenon that extends to a significant area around the high

symmetry points M and M0. Such an important contribu-
tion of out-of-plane magnetization is a consequence of the
strong in-plane gradients of the ionic potential, as reported
in the Tl=Sið111Þ surface [17–19]. On the other hand, our
calculations further identify an important area of almost
pure in-plane circular spin polarization for each state
around the high symmetry point K.
Figure 3(c) shows the results for the calculated spin-flip

transition probability PSS0 ðkÞ � jMSS0 ðkÞj2=jA0j2 for an R

circularly polarized external field, A0 ¼ A0ðx̂þ iŷÞ= ffiffiffi
2

p
.

The results for other polarizations, although slightly differ-
ent, do not substantially modify our general conclusions.
We deduce from Fig. 3(c) that the spin-flip transition

probability is negligible around the � point. This is con-
sistent with Eq. (5) since the surface states are spin-
degenerate here; [26] therefore, SO driven effects such as
the spin-flip excitations are weak. On the other hand, the
most important message of Fig. 3(c) is the extreme local-
ization of the spin-flip transition probability in hot spots

FIG. 3 (color online). (a) and (b) Momentum-dependent spin-polarization structures associated to the S and S0 surface states,
respectively. Arrows represent the in-plane spin-polarization component, whereas the background indicates the surface perpendicular
component of the magnetization, mzðkÞ. The Fermi surface of each state is indicated by solid (blue) lines. (c) Spin-flip transition
probability associated to the S and S0 surface states for R-circularly polarized light. The Fermi surface is indicated by the dashed
(black) lines.

FIG. 2 (color online). Electron band structure of theffiffiffi
3

p
Pb=Geð111Þ surface. The scalar and fully relativistic bands

are represented by dashed (red) and solid thick (blue) lines,
respectively. The continuous background is the bulk band
projection. The fully relativistic metallic surface states are
labeled as S and S0.
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close to the high symmetry point K. A careful comparison
of Figs. 3(a) and 3(b) with Fig. 3(c) reveals that the hot
spots are localized in the boundaries separating the
surface-perpendicular and surface-parallel spin-polarized
regions in the Brillouin zone. This feature is fully consis-
tent with Eq. (4) since the velocity operator introduces a
k-space derivative [25,26], which effectively measures the
variation of the entire wave function and spin polarization
through Eq. (5). Note that this singular effect is completely
absent in Rashba-like systems exhibiting a smooth behav-
ior of spin polarization [9–11].

The light absorption rate associated to surface spin-flip
excitations is given by the following expression:

�SS0 ð!Þ ¼ @! � �SS0 ð!Þ
W

: (6)

Here, �SS0 ð!Þ is the spin-flip transition rate [Eq. (3)], @!
the energy of the external field, and W ¼ cjE0j2=8� the
incident optical power per unit area.

Figure 4 illustrates the calculated absorption rate asso-

ciated to the spin-split surface states of the
ffiffiffi
3

p
Pb=Geð111Þ

and the Rashba-like Au(111) surfaces. For
ffiffiffi
3

p
Pb=Geð111Þ,

the absorption spectrum is bounded in the 0.1–0.3 eV
energy range, corresponding approximately to the spin
splitting at the Fermi level. At this surface, the spectrum
presents a prominent peak close to 0.17 eV, where the
spin-flip absorption rate reaches a remarkable maximum
value of 6%.

This result demonstrates that a significant part of the
incoming radiation is dissipated exclusively in the spin-flip
phenomena. The presence of SO coupling, which makes
the orbital and spin degrees of freedom interrelated, causes
a question on the angular momentum conservation. As the
absorption of circularly polarized light induces a net

transfer of angular momentum, the resulting magnetization
of the surface states can produce a corresponding angular
momentum reservoir in a SO-coupled system. Because of
anisotropy of spin polarization (see Fig. 3), the absorption
spectrum exhibits a substantial variation as a function of
light polarization. As an example, close to 0.25 eV, the
spin-flip absorption rate for L polarized light is approxi-
mately three times stronger than for R polarized light. In
contrast, we find that the absorption spectrum of Au(111) is
practically polarization independent. The reason is that this
system exhibits an almost perfect isotropy, as assumed in
the Rashba model. The magnitude of the spin-flip contri-
bution for Au(111) is relatively weak (0.8% maximum).

Thus, the spin-flip absorption in
ffiffiffi
3

p
Pb=Geð111Þ is 1 order

of magnitude stronger in comparison to Au(111).
It is noteworthy that the bare spin-flip contribution to the

absorption rate in
ffiffiffi
3

p
Pb=Geð111Þ is around three times

stronger than the total absorption of a graphene layer
(2.3%), where the electron spin does not play any signifi-
cant role [33,34]. Thus, the a priori weaker relativistic SO

interaction in
ffiffiffi
3

p
Pb=Geð111Þ exceeds the effect of the

usually predominant nonrelativistic terms such as the elec-
tric dipole mechanism. The reason why the spin-flip con-
tribution in this system is so important is that the hot spot
matrix elements [Fig. 3(c)] lie just inside the Brillouin zone
area where the S state is occupied and the S0 state remains
empty. In this way, the Fermi occupation factors allow
electron transitions precisely where the matrix elements
are maximal. From the discussion above, we can conclude
that a large anomalous feature associated to the enhanced
spin-flip excitation mechanism should be accessible by
infrared optical spectroscopy in the 0.1–0.3 eV energy
range.
In summary, we investigate the role of the SO interaction

on the light absorption rate of the
ffiffiffi
3

p
Pb=Geð111Þ surface.

Our calculations incorporate the full spinor wave function–
structure from first principles, making use of a precise
integration procedure through a Wannier interpolation
scheme for the spin-flip matrix elements. We find that a
substantial part of the low-energy absorption spectrum is
dominated exclusively by the spin-flip excitations associated
to the spin-polarized surface states. It is noteworthy that
these transitions capture as much as 6% of the total incident
power, representing an enhancement of 1 order of magni-
tude in comparison to the Rashba-like prototype Au(111)
surface. The origin of such a huge absorption rate is closely
related to the strong anisotropy exhibited by the spin-
polarization structure connected to the surface states. As
demonstrated in this Letter, a clear fingerprint of the spin-
flip absorption mechanism should be accessible in the opti-
cal range, posing a challenge for further experimental work.
We acknowledge fruitful discussions with B. Rousseau,
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FIG. 4 (color online). Calculated spin-flip absorption rate inffiffiffi
3

p
Pb=Geð111Þ and Au(111). The solid (black), dashed (green),

dotted (red), and dashed-doted (blue) lines represent the results
corresponding to the R and L circularly polarized and the x and y
linearly polarized lights, respectively. Note that the absorption
rate for

ffiffiffi
3

p
Pb=Geð111Þ depends on the light polarization, while

in Au(111) it is practically polarization independent.
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