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The dynamics of tracers in disordered matrices is of interest in a number of diverse areas of physics

such as the biophysics of crowding in cells and cell membranes, and the diffusion of fluids in porous

media. To a good approximation the matrices can be modeled as a collection of spatially frozen particles.

In this Letter, we consider the effect of polydispersity (in size) of the matrix particles on the dynamics of

tracers. We study a two dimensional system of hard disks diffusing in a sea of hard disk obstacles, for

different values of the polydispersity of the matrix. We find that for a given average size and area fraction,

the diffusion of tracers is very sensitive to the polydispersity. We calculate the pore percolation threshold

using Apollonius diagrams. The diffusion constant, D, follows a scaling relation D� ð�c ��mÞ��� for

all values of the polydispersity, where �m is the area fraction and �c is the value of �m at the percolation

threshold.
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The dynamics of tracers in disordered materials is of
fundamental importance, and finds applications in a number
of areas such as crowding effects in biophysics, the dynamics
of fluids in porous media, and the diffusion of tracers in
glasses. In most of these applications the matrix is structur-
ally heterogeneous. Cell membranes, for example, contain
many different types of large integral membrane proteins [1]
of different sizes that act as obstacles to diffusing proteins
and lipidmolecules. There have been extensive studies on the
diffusion of tracers in a sea of fixed obstacles but most have
considered obstacles of uniform size [2–6]. In this Letter, we
consider the important case of polydisperse obstacles.

Polydispersity is ubiquitous in chemical and biological
systems and is thought to play an important role in colloid
physics, [7–9] granular materials, [10,11] and in cytoplasm
mimics [12,13]. Although the presence of polydispersity is
acknowledged, its impact on the tracer dynamics has not
been systematically explored. In this Letter, we illustrate
that the polydispersity can change the protein dynamics in
a qualitative way even for the same area fraction and the
same average size of macromolecules. We also show using
percolation theory and the spatial tessellation that such
seemingly different protein dynamics follows the same
scaling relation.

The diffusion of proteins in cell membranes is signifi-
cantly slower, by orders of magnitude, than in homoge-
neous lipid bilayers. The mean-square displacement,WðtÞ,
of proteins often shows anomalous subdiffusive behavior,
i.e., WðtÞ � t� with time exponent �< 1. Experiments
[2,5] using single particle tracking, fluorescence photo-
bleaching recovery, and fluorescence correlation spectros-
copy techniques revealed that values of � ranged from 0.1
to 0.9 depending on the type of cells.

A qualitative understanding of the observed behavior is
available. In cell membranes, cholesterol rich lipid do-
mains and temporarily static proteins bound to cytoskele-
tons can become obstacles to protein diffusion. When the
area fraction (�m) of such obstacles increases beyond a
critical value, called pore percolation threshold area frac-
tion (�c), percolating free area disappears and the proteins
are confined in local pore space. For �m <�c, at short
times the proteins do random walks in a fractal space and
show anomalous subdiffusion but recover the normal dif-
fusive behavior at long times. At the percolation threshold
(�m ¼ �c), proteins show subdiffusion at all length and
time scales.
The dynamics of proteins near the percolation threshold

can be described by scaling relations [14–23]. Diffusion
coefficients D of tracers in a percolating free area scale as
D� ð�c ��mÞ��� where� and � are scaling exponents.
The mean-square displacementWðtÞ also follows a scaling
relation, i.e., WðtÞ � t2=dwgðð�c ��mÞt1=ð2�þ���ÞÞ where
dw ¼ 2þ ð�� �Þ=� and � is the universal scaling expo-
nent for the correlation length � (�� j�c ��mj��). gðxÞ
is a scaling function given by gðxÞ ¼ x��� for x ! 1,
gðxÞ = constant for x ! 0, and gðxÞ ¼ ð�xÞ�2� for x !
�1. Determining the value of �c and the exponents is not
trivial, especially for polydisperse systems, and is the
subject of this work.
We study the dynamics of hard discs of diameter �

(which is our unit of length) in a two-dimensional space
containing size polydisperse hard disc obstacles. The av-
erage diameter of obstacles, �m, is fixed at �m ¼ �. The
simulation cell is a square of side length L with periodic
boundary conditions in all directions. The number of ob-
stacles (Nm) ranges from 12 606 to 27 303 and L ranges

PRL 109, 155901 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

12 OCTOBER 2012

0031-9007=12=109(15)=155901(4) 155901-1 � 2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.109.155901


from 50 to 300. The obstacle area fraction (�m) ranges
from 0.12 to 0.31. The polydispersity index is defined asP

d2Pd

fP dPdg2 , where d is the diameter of the obstacle and Pd is

the probability of finding an obstacle with diameter d.
Initial configurations of the matrix are created by insert-

ing obstacle discs at random locations so that they do not
overlap with existing discs. The size of each inserted
obstacle disc is sampled from a Gaussian distribution
with mean � and standard deviation �m ¼ 0, 0.5, and 1.
Obstacles with diameter less than 0.1 are excluded from the
configuration and the diameters of all discs are rescaled so
that the average diameter is �. For �m ¼ 0:5 and 1, the
polydispersity indices of rescaled discs are 1.66 and 2.15,
respectively.

A small number (up to 573) of fluid particles are then
inserted so that the fluid area fraction is 0.005. The fluid-
fluid interactions are not significant but having more than
one fluid particle results in better statistics. The fluid
particles are inserted in a percolating region of the matrix
so that there is no overlap with the matrix or other fluid
particles. (We obtain percolating regions using the
Apollonius diagrams discussed shortly.) If no percolating
region is present the fluid particles are inserted at random
locations.

Tracer dynamics is obtained using discontinuous mo-
lecular dynamics (DMD) simulations. DMD simulations
employ an event-driven algorithm and evolve the system
via successive collisions [24]. Hydrodynamic interactions
are ignored in DMD and the dynamics is ballistic between
collisions. Recent simulations [25] have shown, however,
that the long time behavior is not affected by the short
time dynamics. We use DMD because it is more efficient
than Brownian dynamics or Monte Carlo simulations. For
the diffusion of tracers in 3D random media identical
results are obtained for the scaling exponents using either
DMD or Monte Carlo simulations. The mean-square
displacement, WðtÞ½� hj ~riðtÞ � ~riðt ¼ 0Þj2i�, is averaged
over 5–10 configurations of the matrix, where ~riðtÞ is the
position vector of the ith fluid particle at time t and h� � �i
denotes an ensemble average over both fluid and obstacle
configurations.

There are three regimes in tracer dynamics as the ob-
stacle area fraction is increased. For low values of �m, the
mean-square displacement, WðtÞ, is linear in time, t; i.e.,
the diffusion is normal. For very high values of �m, the
tracers are confined in nonpercolating regions and WðtÞ �
t0 for long times. For intermediate times, WðtÞ � t� over
the time scale of the simulation with 0<�< 1; i.e., the
tracers exhibit anomalous diffusion. These regimes are
found for all the matrices studied, i.e., monodisperse, and
polydisperse with �m ¼ 0:5 and 1.

For a given area fraction the tracers can exhibit qualita-
tively different dynamics in the different types of matrices.
Figure 1 depicts WðtÞ=4 as a function of time for the three
types of matrices, and for �m ¼ 0:24. For this matrix

area fraction the tracers are confined in the monodisperse
matrix, show anomalous diffusion in the polydisperse ma-
trix with �m ¼ 0:5, and normal diffusion in the polydis-
perse matrix with �m ¼ 1. The inset shows the apparent
exponent � as a function of �m for the three matrices. The
three regimes are apparent in this plot. The apparent ex-
ponent � drops continuously from 1 to its value at the
percolation threshold as �m increases.
We determine the percolation threshold by mapping the

system onto an effective curvilinear lattice. This is done by
constructing an Apollonius diagram, where space is tessel-
lated into many nonoverlapping space-filling curvilinear
polygons each of which contains one obstacle (see Fig. 2).
Any point in space belongs to a curvilinear polygon of an
obstacle if and only if the obstacle is the closest one to
the point, i.e., j ~x� ~rmij � Ami < j ~x� ~rmjj � Amj, where ~x

and ~rmi are the position vectors of the point and the

FIG. 1 (color). The mean-square displacement, WðtÞ, as a
function of time for �m ¼ 0 (monodisperse matrix), 0.5, and 1,
for �m ¼ 0:24. The inset shows the apparent exponent � in
WðtÞ � t� as a function of �m.

FIG. 2 (color). (a) Apollonius diagram for a polydisperse
medium with �m ¼ 1, �m ¼ 1, and�m ¼ 0:22. Larger obstacles
are represented by darker disks. Green lines and yellow lines are
connected and disconnected edges, respectively. (b) Schematic
of Apollonius tessellation. Shaded circles and open circles
represent obstacles and pores, respectively.
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obstacle, respectively, ~rmj is the position vector of any

other obstacle and Ami denotes the radius of the obstacle.
The vertex in each polygon is defined as the point that is
equidistant from the perimeter of the three neighboring
obstacles, i.e., the center of the circle that is tangent to
these obstacles. The circle is defined as a pore and its
diameter is the pore diameter (�p). The curvilinear edge

between two pores (vertices) is a hyperbola with two foci
located at the centers of two obstacles that two pores share
[Fig. 2(b)].

The connectivity of the diagram is assigned by consid-
ering the possibility of solute passage [4]. When it is
possible for a solute to go directly from one pore to a
neighboring pore along an edge, the edge is considered
to be connected, and disconnected otherwise. The edge
width, w, is defined as the shortest distance between
the perimeters of two obstacles, i.e., w � j~rm1 � ~rm2j �
Am1 � Am2, where ~rm1 and ~rm2 are the positions of two of
the obstacles that define a pore, and Am1 and Am2 are the
corresponding radii. When w is smaller than the diameter
(�) of a solute (or tracer) the solute can not take the path
and the edge is considered disconnected; otherwise it is
determined to be connected. A cluster is defined as a set of
vertices connected via at least one path and clusters of
connected edges are searched for via a recursive algorithm.
A percolating pore cluster, if any, is located by considering
periodic boundary conditions. Under periodic boundary
conditions, at least one vertex of a percolating network
should be connected to its mirror image via a path across a
simulation cell.

In order to obtain the pore percolation threshold area
fraction �c, we estimate the probability (P) that a system
contains a percolating pore network by calculating the
ratio of the number of configurations with percolating
networks to the number of all configurations generated.
In a thermodynamic limit P undergoes a discontinuous
transition at �m ¼ �c. For a finite system, we fit values
of P to a hyperbolic tangent function Pð�m;LÞ¼
1
2f1þ tanh½ð�cðLÞ��mÞ=���g, where �cðLÞ and �� are

fitting parameters. The finite size effect on �c is well

established with a scaling relation, i.e., �cðLÞ ��c �
L�1=�. Our values of �cðLÞ scales well with � ¼ 4=3

and the y intercept of the graph�cðLÞ vs L�1=� is identified
with �c.

The percolation threshold area fraction increases with
increasing polydispersity. In general one would expect
the percolation threshold to be higher with larger obstacles.
However even if �m and the average obstacle diameter are
fixed, the free area available to solutes increases as the
polydispersity increases. This is because obstacles pack
more efficiently in polydisperse media than in monodis-
perse media, and the free area accessible to solutes there-
fore increases with increasing polydispersity. We find that
the pore percolation threshold area fractions �c ¼ 0:21,
0.24, and 0.26 for �m ¼ 0, 0.5, and 1, respectively.

We investigate the scaling behaviors of diffusion coef-
ficients (D) and the mean-square displacements [WðtÞ]. As
depicted in the inset of Fig. 3, D scales well as ð�c �
�mÞ��� with �� � � 1:6 independent of �. WðtÞt�2=dw

also collapse well with the same value of �� � onto a
curve as a function of tð�c ��mÞ2�þ���. However, our
simulation results for �� � � 1:6 deviate from the value
(1.17) for lattice systems. Recent theoretical and simula-
tion studies for a two-dimensional Lorentz model sug-
gested that even though the nonuniversality of the
transport exponent �� � might originate from a suffi-
ciently strong power-law singularity of the transition rate
distribution between pores in three dimensions, narrow
gaps responsible for the singularity would not be relevant
in two dimensions, and the transport exponent for lattices
should be recovered [18,19,21,23].
We cannot conclusively determine whether the exponent

�� � is universal, but our analysis suggests this is the
case if the system is ergodic. In order to investigate
whether the transport exponent �� � is universal, we
estimate the transition rate (W) between two pores and
its distribution [	ðWÞ] [17,22]. If a tracer can collide many
times with the three obstacles defining its pore before
hopping to a neighboring pore, and there is no correlation
between the tracer entering and leaving the pore, one can
invoke the ergodic hypothesis, andW � ðw� 1Þ=A, where
A is the area of the region available for the center of the
tracer in the pore and w is the edge width. As depicted in
Fig. 4, there is no singularity in 	ðWÞ’s for �m ¼ 1 for all
values of �m, which implies that �� � should be a
universal exponent.
The ergodic hypothesis can be guaranteed only when the

expected number [
 � �=ðw1 þ w2 þ w3 � 3Þ] of colli-
sions per residence time of a tracer in a pore is large
enough [26], where wiði ¼ 1� 3Þ is the edge width of a

FIG. 3 (color). The scaling function WðtÞ=ð4t2=dw Þ as a func-
tion of tð�c ��mÞ2�þ��� for various values of �m for �m ¼ 1.
In the inset is the log-log plot of diffusion coefficients as a
function of �c ��m for all values of �m.
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given pore. In case of a periodic Lorentz gas, 
 should be
larger than 3.4. According to Machta and Zwanzig [26],
diffusion coefficients from molecular dynamics simula-
tions were close to those from uncorrelated random walk
models only for 
> 100. As shown in the inset of Fig. 4,
the peak position of the distribution [	ð
Þ] of 
 is far
smaller than 3.4. The validity of the ergodic hypothesis is
therefore questionable for small 
 and consequently we
cannot conclusively determine if the exponent �� � is
universal.

In summary, we perform DMD simulations and spatial
tessellation to investigate the effect of polydispersity in
obstacle size on the solute diffusion. The solute diffusion
can be influenced significantly by the polydispersity be-
cause both the pore size distribution and the pore connec-
tivity change significantly with the polydispersity, thus
changing the pore percolation behavior of media. As the
polydispersity index increases from 1 to 2.15, the pore
percolation threshold area fraction increases by about
24%. Therefore, the solute diffusion may show all of
normal, subdiffusive, and confined dynamics behaviors
depending solely on the polydispersity. This implies that
the polydispersity in obstacle size should be an important
element in the analysis of the experiments on the protein
diffusion and structural heterogeneity in cell membranes.
The spatial tessellation and DMD simulations employed in
this study can be easily extended to study the dynamics and
the structural heterogeneity in cell cytoplasm crowded with
various macromolecules.
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