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The consequences of the sudden change in the coupling constants (quenches) on the phase structure of

the theory at late times are explored. We study in detail the three-dimensional �6 model in the large-N

limit and show that the �6 coupling enjoys a widened range of stability compared to the static scenario.

Moreover, a new massive phase emerges, which for sufficiently large coupling becomes the dominant

vacuum. We argue that these novel phenomena cannot be described by a simple thermalization effect or

the emergence of a single effective temperature.
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Unlocking the problem of out-of-equilibrium dynamics
of a quantum coherent system is one of the fundamental
questions in quantum physics. This is particularly true in
the context of quantum field theories, where many impor-
tant questions have so far been addressed mainly in a static
scenario, such as the renormalization group flow, the phase
structure of vacua, and critical points. There are also
interesting questions that spring directly from a nonequi-
librium system, such as the mechanisms of relaxation, the
time scale over which this occurs, and the existence of an
effective description at late times. These problems, given
their fundamental role in field theories, naturally appear in
many places. For example, it is not surprising that non-
equilibrium dynamics are important in cosmology, in the
evolution of the early universe. The Relativistic Heavy Ion
Collider experiments, involving the relaxation of the
quark-gluon plasma, is another such example. Dynamical
systems appear frequently in the context of condensed
matter physics. Recently, the study has been rendered
particularly pertinent experimentally due to new advances
in the control of cold atomic gases [1–4]. For the first time,
we are able to observe minute details of the evolution of a
system that retains its quantum coherence for sufficiently
long periods of time. One class of situations that has been
subjected to intensive studies is called the quantum
quench, in which a particular external field, or parameter,
of the system is changed abruptly. An example is a sudden
change of the external magnetic field to which the atoms
couple. These experiments have inspired a flurry of theo-
retical activities, most notably initiated by Calabrese and
Cardy [5]. Previous works, however, have been concen-
trated on free field theories, one-dimensional interacting
theories, and integrable models (see, e.g., Refs. [6–12]).
Attempts to understand interacting theories in higher di-
mensions by considering the large-N limit of a �4 theory
have been made in Ref. [13] (see also a related problem in
Ref. [14]).

Previous studies of the quenches mostly concerned the
relaxation of the system. One central issue is whether the

system thermalizes and is therefore describable by an
effective temperature at late times. It is, however, an
open problem if thermalization occurs at all and, if it
does not, which is shown to be the case in many integrable
models and even in some interacting models (see, for
example, Ref. [15] and references therein), whether there
are convenient effective descriptions of such systems and
observables or effective parameters that characterize their
behavior. This leads us to the current investigation of the
phase structure of some out-of-equilibrium states, which in
the scenario concerned is prepared by a quantum quench.
This should be contrasted with the usual notion of the
phase structure of a given Hamiltonian, which is a property
of its ground state. Here, we have to deal with a state that,
while settling to some static equilibrium in the far future,
does not resemble a thermal state, nor is it able to relax to
the ground state because of its isolation and energy con-
servation after the quench. It is, therefore, only natural to
consider fluctuations about such a special state as opposed
to the ground state, and determine its corresponding phase
structure. We demonstrate that this phase structure differs
significantly from that of the ground state even at late times
as the system approaches equilibrium again.
In particular, we explore the g6�

6 theory at the tricritical
point, i.e., when all dimensionful couplings immediately
after the quench are tuned to zero. What is special about
this model is that it was shown to possess an ultraviolet
fixed point g6 ¼ 192, using the 1=N expansion [16,17].
This fixed point, however, lies in the instability region of
the model where nonperturbative effects dominate [18].
(See also Ref. [19] for a recent analysis of the� function in
the case of three-dimensional Chern-Simons theories
coupled to a scalar field in the fundamental representation.)
The latter implies that the theory is always driven into the
unstable region and, therefore, does not make physical
sense. We revisit this theory in the context of quantum
quenches. To that end, we employ the methods introduced
in Ref. [13], where the effect of a quench is incorporated as
a boundary condition on the fields. Assuming that the
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system does settle down, we then self-consistently com-
pute the effective potential that defines the phase structure
of the theory at late times. A corresponding phase diagram
is obtained. Surprisingly, it is modified dramatically in
comparison to the unquenched case. The region of stability
is substantially widened such that the UV fixed point of the
� function now lies well within. Moreover, a new stable
minimum in the effective potential emerges when the
coupling constant exceeds the upper bound of the stability
range in the static theory. The new vacuum starts life as a
metastable phase, but then becomes dominant for suffi-
ciently large values of the coupling. In particular, the
effective mass of the new phase increases as the coupling
increases and, eventually, diverges when the coupling hits
the boundary of a newly established range of stability.

Quenching the scalar model.—The scalar OðNÞ vector
model consists of an N-component scalar field �. For
simplicity we assume that initially the theory is free and
the system is prepared in the ground state of a free
Hamiltonian j�0i. At t ¼ 0 the marginal �6 interaction
as well as the relevant �4 interaction are instantaneously
switched on, and at the same instant the bare mass parame-
ter of the field jumps from �0 to �. The action of the
system after the quench is given by

Sð�Þ ¼ 1

2

Z
d3x

�
@��@����2�2 � g4

2N
ð�2Þ2

� g6
3N2

ð�2Þ3
�
:

Since parameters of the theory are changed abruptly
rather than adiabatically, one needs to resort to the well-
known Keldysh-Schwinger, or in-in, formalism for non-
equilibrium quantum systems. In this formalism, the
integration over the time coordinate t in the path integral
starts from some initial time ti, extends to some final time
tf, and then goes back to ti. Correlation functions are path

ordered. In this approach, one needs to impose boundary
conditions at t ¼ ti. In our case, we require that the initial
state at ti ¼ 0 be given by j�0i. The expectation value of

an arbitrary operator ÔðtÞ is thus given by

h�0jÔðtÞj�0i ¼
Z
CTP

D�ÔðtÞeiSð�Þ; (1)

where, for brevity, we used the following notation to
designate the closed-time-path integral measure

Z
CTP

D� ¼
Z

D�i�0ð�iÞ
Z

D ~�i�
�
0ð ~�iÞ

Z ~�i

�i

D�; (2)

where �i and ~�i denote the values of the scalar field � at
the end points of the time contour, whereas �0ð�iÞ ¼
h�ij�0i.

Introducing the following identity into the path
integral [20]

I�
Z
CTP

D��ð�2�N�Þ�
Z
CTP

D�D�e�i=2
R
d3x�ð�2�N�Þ;

(3)

yields

h�0jÔðtÞj�0i ¼
Z
CTP

D�
Z

D�D�ÔðtÞeiSð�;�;�Þ; (4)

where

Sð�;�; �Þ ¼ 1

2

Z
d3x

�
@��@��� ð�2 þ �Þ�2

� N
g4�

2

2
� N

g6�
3

3
þ N��

�
: (5)

Now performing the Gaussian integral over � leads to

h�0jÔðtÞj�0i ¼
Z
CTP

D�D�ÔðtÞeiNSeff ð�;�Þ; (6)

with

Seffð�; �Þ ¼
Z

d3x

�
��

2
� g4

4
�2 � g6

6
�3

�

þ i

2
Tr logð@2 þ�2 þ �Þ: (7)

The first thing to note about the above expression is that
boundary conditions are now encoded in the functional
trace. Secondly, this trace explicitly depends on the inte-
gration parameter �, and this in turn renders evaluation of
the remaining path integral very difficult.
However, in the limit when N is large while g4 and g6

are fixed, the right-hand side of Eq. (6) is dominated by
the field configurations that minimize the right-hand side
of Eq. (7). The effective mass can thus be evaluated as
follows:

m2
� ¼�2þg4 ��þg6 ��

2; ��¼
Z d2p

ð2�Þ2
~G�ðt; t;pÞ; (8)

where m2
�¼�2þ �� is the effective mass of the scalar field

and ~G�ðt1; t2;pÞ is the full momentum space two-point

correlation function of the scalar field to leading order in
1=N. Fields evaluated at the saddle point are denoted
by a bar.

Note that ~G�ðt1; t2;pÞ depends on the effective mass

m2
�, and therefore it is difficult to solve Eq. (8) in full

generality. Hence, in what follows we use the approxima-
tion proposed in Ref. [13]. In particular, we assume that
m� tends to a stationary value m�

� and that this happens

fast enough to be approximated by a jump. Then the two-

point correlation function ~G�ðt1; t2;pÞ is approximately

the same as the propagator in the massive free field theory
in which the physical mass is instantaneously changed
from �0 to m�

�, i.e.,

~G�ðt1; t2;pÞ ’ G�ðt1; t2;p;�0; m
�
�Þ; (9)

where [13]
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G�ðt1; t2;p;�0; m
�
�Þ ¼

ð!�
p �!0pÞ2
4!�2

p !0p

cos!�
pðt1 � t2Þ

þ!�2
p �!2

0p

4!�2
p !0p

cos!�
pðt1 þ t2Þ

þ 1

2!�
p

e�i!�
pjt1�t2j; (10)

with !�
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2 þm�2

�

q
and !0p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2 þ�2

0

q
. The second

term on the right-hand side is the only one that breaks time
translation invariance. However, using stationary phase
approximation, it can be shown that its contribution to ��

vanishes as t�1=2 for t1 ¼ t2 ¼ t ! 1. Note that in Eq. (8),
�� is divergent. We take a sharp cut off � to regulate the
divergent integral over the momentum, and further absorb
� in the bare couplings by the following renormalization
scheme: �2

R ¼ �2 þ g4�=ð4�Þ þ g6�
2=ð16�2Þ, and

gR4 ¼ g4 þ g6�=ð2�Þ. This yields

m�2
� ¼ �2

R � gR4
4�

�
�0 þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m�2

� ��2
0

q
arccosð�0=m

�
�Þ
�

þ g6
16�2

�
�0 þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m�2

� ��2
0

q
arccosð�0=m

�
�Þ
�
2
:

(11)

Solutions of this equation describe the stationary points of
the effective potential.

Phase structure of the model.—To analyze the admis-
sible phases of the model let us derive the effective poten-
tial of the theory as t ! 1. From Eq. (7), we get, up to a
��-independent constant,

Veffð ��;m�2
� Þ ¼ �2

2
��þ g4

4
��2 þ g6

6
��3 �m�2

� ��

2

þ 1

2

Z m�2
�

0
dm2

Z � d2p

ð2�Þ2 G�ðt; t;p;�0; mÞ:
(12)

Varying this effective potential with respect to �� and m�2
�

correctly reproduces the saddle point Eq. (8). Note that � is
not a dynamical field since it enters only algebraically into
the action [Eq. (7)]. Hence, we eliminate it from the
effective potential using the second part of Eq. (8).
Replacing the couplings by renormalized ones and further
rescaling them by �0 yields

~Veffðm2Þ ¼ � ~�2
R

8�

�
1þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � 1

p
arccosð1=

ffiffiffiffiffiffi
m2

p
Þ
�
þ ~gR4

4ð4�Þ2
�
1þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � 1

p
arccosð1=

ffiffiffiffiffiffi
m2

p
Þ
�
2

� g6
6ð4�Þ3

�
1þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � 1

p
arccosð1=

ffiffiffiffiffiffi
m2

p
Þ
�
3 þ ðm2 þ 2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � 1

p
arccosð1=

ffiffiffiffiffiffi
m2

p
Þ þm2 � logm2

48�
; (13)

where ~Veff , ~�R, ~g
R
4 , and m2 denote, respectively, the re-

scaled dimensionless effective potential, the dimensionless
renormalized couplings �R and gR4 , and asymptotic mass.
Again, varying Eq. (13) with respect to m2 recovers
Eq. (11).

Let us briefly discuss the case where both g6 and �R are
zero. This case was considered in Ref. [13]. The character-
istic shape of the effective potential of the quenched theory
in this case is shown in Fig. 1 (red line), and as pointed out
in Ref. [13] a finite mass always emerges at late times in
the presence of interactions. This should be contrasted with
the presence of a global minimum at m ¼ 0 in the un-
quenched theory as shown in Fig. 1 (blue line). This case
already illustrates the main point that we wish to make,
namely, that the shape of the effective potential at late
times depends on the quench, an event that occurred in

the far past. More interesting and spectacular, however, is
the case in which the theory sits at the tricritical point, i.e.,
when �R ¼ gR4 ¼ 0. Expanding the effective potential
then for large and small values of m2 yields

~VeffðmÞ ¼ m3

96

�
1� g6

gc

�
þOðmÞ if m � 1;

~VeffðmÞ ¼ �g6
gc

log3m

12�3
þOð1Þ if m � 1;

(14)

where gc ¼ 256 corresponds to a critical value beyond
which the potential is unbounded from below, and thus
the theory is unstable.
It is remarkable that gc is larger than the corresponding

value in the unquenched case [18]. There, the region of
stability is bounded by 0 � g6 � ð4�Þ2 � g�6 (the lower
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FIG. 1 (color online). Red line (bottom): Effective potential
[Eq. (13)] as a function of m for g6 ¼ �R ¼ 0 and ~gR4 ¼ 1. Blue
line (top): Effective potential of the �4 theory; i.e., g6 ¼ 0 in the
absence of quench when �R ¼ 0 and ~gR4 ¼ 1.
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bound g6 � 0 is necessary to avoid instability in the
direction of OðNÞ broken phase [18]). In particular, pre-
vious studies [16–18] have spelled disaster for the theory in
the ultraviolet limit: the � function drives the system into a
UV fixed point g6 ¼ 192, which lies beyond the region of
stability. In contrast, our results indicate that there is a way
to circumvent the above conclusion by a quench in the
parameters of the system.

It is instructive to contrast the phase diagrams with those
of the unquenched case. There is only one admissible
conformal phase if the coupling constant satisfies 0 �
g6 < ð4�Þ2 and the system is not quenched. Quenching
introduces a scale �0, and even though right after the
quench the theory enjoys conformal invariance, �0 is
inherent to the state and thus sets a scale for all dimen-
sionful observables. In particular, the system resides in a
light massive phase which scales with �0 (see the solid
blue graph at the top of Fig. 2).

If the coupling constant is tuned to a special value g�6, the
unquenched potential becomes flat, and thus a continuum
of massive solutions emerges. This continuum is associ-
ated with spontaneous breaking of the scale invariance, and
it coexists with the massless phase. In the quenched case,
the energy scale�0 singles out a unique vacuum out of this
continuum. When g6 ¼ g�6, this vacuum manifests itself as

a point of inflection in the effective potential. For g�6 <
g6 < gc as t ! 1 and the system comes to equilibrium, we
find two admissible vacua, shown in Fig. 2. The heavier
phase is only metastable unless the coupling constant is
sufficiently close to gc (see the dashed green and solid
black graphs at the bottom of Fig. 2). In the unquenched
case, all phases become unstable for g6 > g�6, and the

system rolls down to infinity [21].
At the tricritical point, this model exhibits conformal

invariance. Therefore, the energy-momentum tensor satis-
fies the operator equation T

�
� ¼ 0, and the expectation

value of its trace in the state that emerges after the quench
must vanish. Indeed,

T�� ¼ @��@��� 	��

2

�
ð@�Þ2 � g6

3N2
�6

�

� 1

8
ð@2�� � 	��@

2Þ�2: (15)

The last term does not contribute to the expectation value
since N �� ¼ h�2i is constant as t ! 1. Furthermore, from
Eq. (10) it follows that asymptotically hð@�Þ2i ¼ Nm�2

� ��.

Hence,

hT�
�i¼�1

2
hð@�Þ2iþ g6

2N2
hð�2Þ3i¼N ��

2
ðg6 ��2�m�2

� Þ¼0;

(16)

where the last equality follows from Eq. (8).
To conclude, by studying the late-time phase structure of

the �6 theory after a quantum quench, we have demon-
strated the following: a dramatic event that occurred in the
far past can have significant effects even in the far future.
Not entirely unexpectedly, we find that in the large-N limit
the late-time physics cannot be described by simple ther-
malization with a single effective temperature, which has
been noted in many integrable models. The temperature
obtained by inspecting the fluctuation of the scalar field
does not agree with that resulting from matching the ex-
pectation value of the stress tensor with its thermal counter-
part [22]. Furthermore, generically the free energy is
manifestly different from the effective potential [Eq. (13)];
see Fig. 3. The quantum quench modified significantly the
phase structure long after the system has relaxed and
settled into an equilibrium state. We believe this is a
generic feature of quantum quenches and is not specific
to the model that we have studied. In passing, we note also
significant modifications in a supersymmetric version of
this model: contrary to the current model, where new stable
phases are created, we found instability generated by the
quench [23]. This apparent dependence of the phase struc-
ture on past events may have implications in other areas of
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FIG. 2 (color online). Effective potential [Eq. (13)] as a func-
tion of m at the tricritical point �R ¼ gR4 ¼ 0 in the vicinity of
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physics, e.g., in cosmology. It is therefore important to
determine, and perhaps classify, different time-dependent
changes in a generic theory that could potentially lead to
drastic modification of late-time physics. In this work, we
have made extensive use of techniques developed in
Ref. [13], where it is implicitly assumed that the system
relaxes ultimately to an equilibrium. The authors of
Ref. [13] support their claim by extensive numerical com-
putations and show that this assumption works very well
quantitatively in �4 theories in arbitrary dimensions. In
this work, we extrapolate their assumption to study the �6

theory at the tricritical point. Further numerical checks of
the current model and more general ones are under way
and will appear elsewhere [23].
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