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G. Bismut, B. Laburthe-Tolra, E. Maréchal, P. Pedri, O. Gorceix, and L. Vernac
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We measure the excitation spectrum of a dipolar chromium Bose-Einstein condensate with Raman-

Bragg spectroscopy. The energy spectrum depends on the orientation of the dipoles with respect to the

excitation momentum, demonstrating an anisotropy that originates from the dipole-dipole interactions

between the atoms. We compare our results with the Bogoliubov theory based on the local density

approximation and, at large excitation wavelengths, with the numerical simulations of the time-dependent

Gross-Pitaevskii equation. Our results show an anisotropy of the speed of sound.
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Interactions play a major role in the physics of Bose-
Einstein condensates (BECs), made of trapped neutral
atoms. Attractive interactions may lead to a collapse [1],
while repulsive interactions confer a collective nature to
excitations [2] and lead to superfluidity [3]. In the first
produced BECs, only contact interactions played a signifi-
cant role. The study of long-range anisotropic (partially
attractive) dipole-dipole interactions (DDIs) in quantum
gases was initiated by the production of chromium BECs
[4], followed more recently by experiments with dyspro-
sium [5,6] and erbium [7]. DDIs introduce anisotropy in
the expansion dynamics [8] and the collective excitations
of a Cr BEC [9]. Moreover, when DDIs overwhelm the
contact interactions, a BEC undergoes a characteristic d-
wave-like implosion, revealing the structure of the DDIs
[7,10]. While these already observed dipolar effects are
sensitive to trap geometry, DDIs can also modify the bulk
properties of quantum gases, independent of geometry.
In particular, DDIs may lead to anisotropic superfluidity
in Bose [11] or Fermi gases [12], with possible analogies to
anisotropic superconductivity in cuprates. In this Letter, we
study the elementary excitations of a Cr BEC and show an
anisotropic excitation spectrum, providing a signature of
an anisotropy of the speed of sound and, therefore, accord-
ing to the Landau criterion, a possibility for anisotropic
superfluidity.

Raman-Bragg spectroscopy, creating elementary excita-
tions with a well-defined momentum, has developed into a
powerful instrument to study the bulk properties of quan-
tum gases [13]. Following the first seminal demonstration
that rapidly followed the creation of atomic BECs [14,15],
a more systematic series of experiments gave a full picture
of the BEC excitation spectrum from the low-energy
phonon-like excitations to the high-energy single-particle
regime [16]. Despite several reviews and theoretical papers
pointing out the interest in the excitation spectrum of
bosonic gases featuring DDIs [17–19], experimental re-
sults are not yet available. See, however, the recent works
on effective long-range interactions in optical lattices [20].
Chromium atoms away from a Feshbach resonance are

particularly suitable to study the bulk properties of dipolar
BECs, since DDIs are non-negligible, without leading to
collapse. In this Letter, we provide the first evidence that
long-range dipolar interactions induce an anisotropy of a
BEC excitation spectrum using Raman-Bragg spectros-
copy. The spectrum is anisotropic as the resonance condi-
tion depends on the angle � between the polarization
axis parallel to the magnetic field B and the excitation
wave vector q (see Fig. 1). We probe this anisotropy
throughout the whole excitation spectrum with differential

(a) (b)

FIG. 1 (color online). The principle of the experiment and
absorption pictures after a Bragg pulse. The two Bragg beams
are coupled to the BEC with an angle �, and transfer a momen-
tum @q and an energy hf to the excited fraction. Because of

DDIs, the excitation spectrum depends on the angle � between q
and B. The two absorption pictures, in false color, show the
density after Bragg pulse and time of flight, and the solid lines
indicate the direction of momentum transfer. In (a), the small
value of� (14�), and hence of q, barely allows spatial separation
of the excited fraction, contrary to the case of large � (82�)
in (b).
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measurements for two orthogonal orientations of the mag-
netic field, either parallel or orthogonal to q.

The anisotropy of the excitation spectrum for an homo-
genous dipolar BEC is well understood within the
Bogoliubov theory [17]:
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where �ðqÞ and q are, respectively, the energy and wave
vector of the excitation, m the atom mass, n the atomic
density, and g ¼ 4�@2a=m (with a the scattering length);
�dd is the dimensionless parameter scaling the relative
importance of dipolar interactions with respect to contact
interactions. For magnetic DDIs, �dd ¼ �0�

2
mm=12@2a

(�0 is the vacuum permeability, �m the atom magnetic
moment equal to six Bohr magnetons for Cr). In the
absence of DDIs (�dd ¼ 0), one recovers the known spec-
trum for a BEC with only contact interactions [21]. For Cr,
�dd is 0.16 (with a ¼ 102:5a0 [22]), which allows us to
explore the anisotropic character of Eq. (1) more easily
than for alkali BECs (e.g., �dd ¼ 0:01 for Rb). The angular
dependance of Eq. (1), related to the fact that the Fourier
transform of DDIs depends on the relative momentum of
the particles (contrarily to the case of delta potential inter-
actions), can be interpreted as an attractive contribution
(repulsive) of DDIs to the excitation energy for the per-
pendicular (parallel) case [17].

According to Eq. (1), the sound velocity defined as c� ¼
limq!0

�ðqÞ
q becomes anisotropic. It is maximal in the par-

allel (� ¼ 0) geometry, while it is minimal in the perpen-
dicular (� ¼ �=2) geometry. Defining the velocity without

DDIs c0 ¼ ðgn=mÞ1=2, one obtains ck ¼ c0ð1þ 2�ddÞ1=2
and c? ¼ c0ð1� �ddÞ1=2, so that ck=c? ¼ 1:25 for Cr.

This relative dipolar shift of 25% is larger than in previous
experiments with Cr BECs [8,9], where shifts remained in
a lower percentage range (much less than �dd), as a result
of angular averaging of DDIs in the BEC [8,23]. The
situation is quite different for the bulk BEC excitations
described by Eq. (1), as there is no such angular averaging:
� has the same value for all the atoms.

To obtain the experimental excitation spectra, we first
create a chromium BEC in a crossed-beam dipole trap.
Details on the experimental setup and the procedures can
be found in Ref. [24]. The BEC, comprising about 10 000
atoms polarized in the absolute ground (Zeeman) state, is
confined at the bottom of the trap with frequencies
ð!x;!y;!zÞ ¼ 2�� ð145; 180; 260Þ Hz, within a mag-

netic field of B ¼ 50 m Gauss. To impart a momentum q
to a fraction of the condensed atoms, we use two intersect-
ing phase-locked focused laser beams derived from the
same single-mode solid-state laser (� ¼ 532 nm). Two
acousto-optic modulators shift the beam frequencies by,
respectively, � and �þ 2�f, with � ¼ 2�� 80 MHz.

At the atom location, the respective waists of the laser
beams are 40 and 32 �m, while their powers are between
500 and 1000 �W. The beam intensities are chosen to
limit the excited fraction to about 15% which ensures a
good trade-off between the validity of the perturbative
Bogoliubov approach for theoretical interpretation and
the signal-to-noise ratio. The angle � between the beams
propagating directions sets the momentum value q½q ¼
2�=�� sinð�=2Þ�, while the energy difference hf, equal
to the energy of the excitation, is adjustable at will.
Although the optical access restricts the accessible values
for�, thus also those for q, we have been able to probe the
dispersion relation from the phonon to the free-particle
regime.
The two beams, hereafter referred to as the Raman

beams, are switched on only for a brief pulse time.
Raman transitions are efficiently driven between the rest
ground state and the excited states, with momentum q and
energy hf, when the beam photon energy difference
matches the excitation energy, i.e., when the Raman-
Stokes resonance condition is met. Since the process can
be interpreted as diffraction of the matter wave onto the
moving lattice created by the Raman beams, the whole
process is often referred to as Bragg spectroscopy of the
excitation spectrum of the BEC. To ensure that the mo-
mentum of the atoms is solely set by the Bragg pulse (and
is not modified by trap dynamics), the pulse duration �Bragg
should be far less than the oscillation periods in the trap
[14]. Meeting this requirement causes a strong Fourier
broadening, and we found a trade-off by setting �Bragg ¼
1:5 ms: the Fourier broadening (half width at 1=e2 ¼
300 Hz) is then smaller that the experimental spectra
widths, and spatial separations between the excited frac-
tion and the ground state are close to the ones expected
from the Bragg momentum transfer (@q=m� expansion
time; see below).
We measure the atom momentum distribution by releas-

ing the atoms from the trap after the Bragg pulse and by
performing absorption imaging after an expansion time of
5 ms (see Fig. 1). From the density profiles of these
distributions along the excitation direction [25], we infer
the excited fraction Pexc ¼ ½Nexc=ðNexc þ N0Þ�, where
Nexc is the number of excited atoms and N0 the number
of atoms remaining in the ground q� 0 state. We record
the Bragg spectra by monitoring the excited fraction versus
f for a given value of �. It is clear from Fig. 2 that the
excitation energy spectrum for parallel polarization is
shifted towards high frequency with respect to the spec-
trum for orthogonal polarization, as expected from Eq. (1).
The results of Eq. (1) hold only in the homogeneous case.

With trapped gases, two kinds of finite size effects have to
be taken into account, which are sources of spectral broad-
enings: the density inhomogeneity in the trap, and the non-
zero width-momentum distribution (inducing Doppler
effect), which are dominant, respectively, at low and high
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excitationmomentum [26]. To account for our experimental
results, we extended the theory developed inRef. [26] based
on local density approximation (LDA) by including DDIs.
The validity of LDA with DDIs, discussed in Ref. [18], is
guaranteed if q � 1=RTFmin [27], with RTFmin the smallest
BEC Thomas-Fermi (TF) radius. Then, the BEC can be
considered as a locally homogeneous 3D system [28]; q �
1=RTFmin also ensures that the effects of energy discretiza-
tion can be safely neglected.

For a comparison with our experimental spectra (see
Fig. 2), we take into account the Doppler width and
make a convolution between the corresponding Gaussian
and the LDA excitation spectrum [29]. The Fourier broad-
ening due to the finite excitation duration is also taken into
account within the linear response theory [30]. The two-
photon Raman frequency �R, which sets the excitation
amplitude [16], is estimated from a calibration of the lattice
depth created by the Raman beams [31]. The agreement
with theory (with no adjustable parameter) of the spectra
line shapes is good, except for the two lowest experimental
values of q. For the excitation amplitude, the discrepancy

remains at most in the 50% range for all spectra. All
features are in very good agreement in the case of Fig. 2,
for which we estimate �R ¼ 2�� ð140� 30Þ Hz.
We have performed a study of the effects of DDIs by

probing the excitation spectrum as a function of q from the
phonon regime to the free-particle regime (see Fig. 3). We
define the experimental value of �ðqÞ as the mean value of
the excitation energy, obtained by using asymmetric
Gaussian fits of the excitation spectra; this procedure em-
pirically takes into account the nonsymmetric nature of the
excitation spectra, which is expected from the Thomas-
Fermi distribution (see for example Ref. [26]). We define
�kðqÞ [respectively, �?ðqÞ] as the mean value obtained for

(a) (b)

FIG. 2 (color online). Excitation spectra for q�0 ¼ 0:8 (� ¼
14 deg). The excited fraction Pexc is plotted versus the detuning
frequency f between the two Bragg beams for � ¼ 0 (filled
circles) and � ¼ �=2 (open circles). The two solid lines are
asymmetric Gaussian fits to the data (see text). The error bars
represent the 1-sigma statistical uncertainty associated to three
measurements. The two spectra are shown separately below
(a) � ¼ �=2, (b) � ¼ 0 along with the results of our linear
response theory (dashed lines), which has no adjustable parame-
ters, and of our numerical simulations (diamonds).

(a)

(b)

FIG. 3 (color online). (a) Energy spectra: the energy �ðqÞ
divided by h is plotted as a function of Bragg-transferred
momentum q. The circles correspond to the experimental data:
for a given value of q, the top (bottom) circle corresponds to the
parallel (perpendicular) case. The point at q�0 ¼ 1:6 corre-
sponds to a four-photon process (see text). The two solid lines
are the results of LDA calculations for parallel (top line) and
orthogonal (bottom line) cases. The dashed line gives the results
for a free particle. Inset: zoom for low q values. (b) Relative shift
�ðqÞ of the excitation energies (see text) as a function of q.
Black points: results of fits of the experimental data, with error
bars. Solid line: results of LDA calculations. The diamonds show
the results of numerical simulations. For (a) and (b), the vertical
error bars represent 1	 statistical uncertainty, while the hori-
zontal ones correspond to uncertainties on the values of �.
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the parallel (orthogonal) case. Figure 3(a) shows the cor-
responding data. We use the DDI-independent healing

length �0 ¼ @=ð2mgn0Þ1=2 (with n0 the measured BEC
peak density) to normalize the q axis: �0 indicates the
frontier between the phonon domain (q�0 < 1) and the
single-particle domain (q�0 � 1). The data correspond
to four � angles. To fill the gap between the accessible
low (6�, 10�, and 14�) and the high (82�) values of �, we
realized a four-photon Raman-like excitation [32] to obtain
data for another q value [q ¼ 4�=�� sinð14�=2Þ, and
q�0 ¼ 1:6]. The horizontal error bars are mainly set by
the uncertainty on the experimental value of �, and the
vertical ones are determined by applying a bootstrapping
procedure [33] to the experimental data. We compare the
predictions of our theory assuming a constant (104) number
of atoms with the corresponding experimental data in
Fig. 3(a) [34]. We obtain a good general agreement be-
tween the data and theory with no free parameter; some of
the discrepancies may originate from an underestimation
of the uncertainties on the values of �.

To emphasize how the two dispersion curves differ, we

plot in Fig. 3(b) the relative variation of �ðqÞ, �ðqÞ ¼
2
�kðqÞ��?ðqÞ
�kðqÞþ�?ðqÞ . We measure an anisotropy of the excitation

spectrum of the Cr BEC, both in the low q limit and the
high q limit. As the systematic effects on �ðqÞ related to
changes in trapping frequencies and atom number induced
by the change in � remain negligible (from at most 1.5% at
low q to below 0.1% at high q), our results demonstrate a
DDI-induced anisotropy of the excitation spectrum. The
agreement with our linear response theory is relatively
good, except for the lowest value of q. This is not surpris-
ing, since then the excitation wavelength is larger than the
BEC Thomas-Fermi diameter (equal to 7 �m). For long
wavelengths, discrete modes can be excited, for which the
effects of DDIs are much smaller than for phonons, as
observed in Ref. [9]. We have therefore solved numerically
the time-dependent 3D Gross-Pitaevskii equation includ-
ing contact interactions and DDIs. Our numerical simula-
tions are in rather good agreement with our experimental
data [see Fig. 3(b)], and show that relative shifts signifi-
cantly smaller than the ones obtained with the LDA theory
are expected as the excitation wavelength increases.

We finally rely on the LDA theory to extract quantitative
values for the sound velocity from our experimental data. In
our case, the extensive experimental study of the linear
phonon part of the spectrum is not accessible owing to the
small size of our BEC (in contrast to Ref. [16]). We there-
fore chose to derive sound velocities from the data at q�0 ¼
0:8, as this is the lowest value of q for which we find a good
agreement with the LDA theory. The corresponding
excitation frequency (around 1.5 kHz) is significantly
higher than the trap frequencies, which explains why the
energy discretization effects are small. From the experi-
mental values �k=h ¼ ð1:57� 0:05Þ kHz and �?=h ¼
ð1:35� 0:03Þ kHz, we derive sound velocities through the

linear response theory. The Feynman law (see Ref. [16])
relates the average energy �q to the (LDA averaged) static

structure factor Sq: �q ¼ �0q
Sq
, with �0q ¼ @

2q2=2m the free-

particle energy, and Sq is related to c� through Sq¼
15
4
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, where 
q ¼
2mð15�c�=32Þ2=�0q. We obtain c?¼2:06�0:05mm �s�1

and ck ¼ 2:64� 0:1 mm � s�1, in good agreement with the

LDA predictions in our experimental conditions equal to
2:02� 0:05 mm � s�1 and 2:53� 0:05 mm � s�1, respec-

tively,�c�;LDA ¼ 32
15�

�
gn0
m ½1þ �ddð3cos2�� 1Þ�

�
1=2

.

In this Letter, we have shown that the excitation spec-
trum of a spin-polarized chromium BEC is anisotropic as a
consequence of the dipolar character of the interactions
between the atoms. As long as the wave vector is not too
small compared to the inverse of the BEC size, our experi-
mental results are correctly accounted for by a linear
response theory based on the Bogoliubov approach. The
demonstrated existence of an anisotropic speed of sound
raises the question of anisotropic superfluidity, for ex-
ample, how excitations in different directions couple.
Extension of our work to BECs with larger DDIs could
allow the discovery of rotonic features in the excitation
spectrum [35] of quasi-2D BECs.
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O. Gorceix, and B. Laburthe-Tolra, Phys. Rev. Lett. 105,
040404 (2010).

PRL 109, 155302 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

12 OCTOBER 2012

155302-4

http://dx.doi.org/10.1103/PhysRevA.54.661
http://dx.doi.org/10.1103/PhysRevA.54.661
http://dx.doi.org/10.1103/PhysRevLett.77.988
http://dx.doi.org/10.1103/PhysRevLett.85.2228
http://dx.doi.org/10.1103/PhysRevLett.85.2228
http://dx.doi.org/10.1103/PhysRevLett.94.160401
http://dx.doi.org/10.1103/PhysRevLett.107.190401
http://dx.doi.org/10.1103/PhysRevLett.107.190401
http://dx.doi.org/10.1103/PhysRevLett.108.215301
http://dx.doi.org/10.1103/PhysRevLett.108.215301
http://dx.doi.org/10.1103/PhysRevLett.108.210401
http://dx.doi.org/10.1103/PhysRevLett.95.150406
http://dx.doi.org/10.1103/PhysRevLett.95.150406
http://dx.doi.org/10.1103/PhysRevLett.105.040404
http://dx.doi.org/10.1103/PhysRevLett.105.040404


[10] T. Lahaye, J. Metz, B. Fröhlich, T. Koch, M. Meister,
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