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The energy in hot electrons produced by the two plasmon decay instability, in planar targets, is

measured to be the same when driven by one or two laser beams and significantly reduced with four for a

constant overlapped intensity on the OMEGA EP. This is caused by multiple beams sharing the same

common electron-plasma wave. A model, consistent with the experimental results, predicts that multiple

laser beams can only drive a resonant common two plasmon decay electron-plasma wave in the region of

wave numbers bisecting the beams. In this region, the gain is proportional to the overlapped laser beam

intensity.
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Direct-drive confinement fusion requires multiple over-
lapping laser beams. These overlapping beams can drive
the two-plasmon-decay (TPD) instability creating large
amplitude electron plasma waves in the region near
quarter-critical density [1]. These plasma waves can lead
to anomalous absorption and hot-electron generation [2,3]
that can preheat the fusion fuel and reduce the compression
efficiency. Understanding the behavior of TPD is critical to
mitigating it in inertial confinement fusion experiments.

The TPD instability consists of the decay of an electro-
magnetic wave into two electron-plasma waves [4,5].
Phase matching, energy conservation, and the dispersion
relations of the waves limit the instability to a small region
near the quarter-critical density. Stability calculations of a
single-linearly-polarized electromagnetic wave show that
the spatial growth rate of instability is proportional to the
quantity ILn=Te, where I is the laser beam intensity, Ln is
the plasma density scale length, and Te is the electron
temperature of the plasma [6,7]. When the instability is
driven to nonlinear saturation, a broad spectrum of large-
amplitude plasma waves is generated [8] and can acceler-
ate electrons to high energies (� 100 keV) [9].

When multiple overlapping laser beams with polariza-
tion smoothing are used [10], the total energy in hot
electrons was shown to scale with the overlapped intensity
(I�), defined as the sum of the intensity of each beam [11].
This scaling would not be expected if the beams drive the
TPD independently, according to the single plane wave
growth rates. A model is proposed where different laser
beams share a common-electron wave.

This Letter describes the first experimental validation of
the common-wave process [Fig. 1(a)] where the total en-
ergy in hot electrons is measured to be similar when one or
two polarized beams are used at the same overlapped
intensity and significantly reduced when four beams with
the same overlapped intensity are used. A theoretical de-
scription of the common-wave process shows that multiple
laser beams can share an electron-plasma wave in the

region bisecting the electromagnetic wave vectors. In this
region, the temporal growth rate and convective gain of the
dominant mode are proportional to the overlapped inten-
sity, a factor that depends on the geometry, the polariza-
tion, and the relative intensity of the laser beams.
The experiments were conducted on OMEGA EP [12],

where the four 351-nm beams are polarized vertically and
intersect the target at an angle of 23� with respect to the
target normal [Fig. 1(b)]. The beams have spatially over-
lapped focal spots to within 20 �m and used 2-ns flat-top
laser pulses that are cotimed to within 50 ps. Two sets of
distributed phase plates [10] were used (890-�m diameter
for beams 1 and 2 and 840-�m diameter for beams 3 and 4)
to produce an �1-mm-diameter super-Gaussian intensity
distribution profile. A maximum single-beam energy
of 2 kJ (2.6 kJ) was used on beams 1 and 2 (3 and 4),
which provided a single-beam Imax ¼ 1:6� 1014 W=cm2

(Imax ¼ 2:4� 1014 W=cm2). The relative error in inten-
sities is dominated by the shot-to-shot power measure-
ments on each beam of less than 5%. This results in a
maximum error in overlapped intensity of 10%.
The laser beams illuminated a 30-�m-thick CH layer

deposited on 30 �m of Mo and backed with an additional
30 �m of CH. Hydrodynamic simulations using the 2D
code DRACO [13] indicate that the laser light interacts with
the first layer, producing a CH plasma with density and
temperature profiles that depends only on the overlapped
laser intensity. For the experimental conditions presented
here, the hydrodynamic profiles near quarter-critical den-
sity reach a steady state after about 1.5 ns. After this time,
the calculated quantity I�;qLn=Te varies by less than 10%

where I�;q is the overlapped intensity at the quarter-critical

density. When the overlapped laser intensity is increased
from 1:5� 1014 W=cm2 to 7� 1014 W=cm2, the density
scale length (Ln) increases from 260 �m to 360 �m, the
electron temperature (Te) increases from 1.5 keV to
2.5 keV, and, due to absorption, the laser intensity at
quarter-critical density is about equal to half of the
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vacuum intensity; the ratio Ln=Te is nearly constant
(� 160 �m=keV).

The x-ray spectrometer [14–16] is used to measure the
energy emitted into the Mo K� emission line (EK�

) using

an absolutely calibrated planar LiF crystal spectrometer
that views the target from the laser incident side at an angle
of 63� from the target normal [16]. The hard x-ray detector
[17] measures the x-ray radiation generated by the hot
electrons in the Mo above �40 keV, �60 keV, and
�80 keV [17]. It allows the hot-electron temperature to
be estimated using the exponentially decreasing x-ray
energy in each channel. The relative error in the measure-
ment of the hot electron temperature is 20%. Monte Carlo
simulations using the code EGSNRC [18] are used to deter-
mine the total hot-electron energy (Ee) given the measured
hot-electron temperature (Thot) and the total energy in the
K� emission [16]. The relative error of 25% is dominated
by measurement errors. Figure 2(a) shows that the depen-
dence of the hot-electron temperature with the total energy
in K� is comparable when using one beam, two beams, or
four beams.

Figure 2(b) shows that the total laser energy (El) con-
verted into hot electrons (fhot ¼ Ee=El) as a function of the
overlapped intensity is similar when using one or two

beams in the horizontal, vertical, or diagonal configuration
and increases exponentially as a function of the overlapped
intensity. These results show that the TPD growth is due to
the interplay between the two beams through a common-
wave process. If the hot electrons were generated by two
independent single-beam processes, each with an intensity
of I�=2, the total hot-electron energy would be the sum of
the hot-electron energy generated by each beam. This
would be significantly smaller than the hot-electron energy
generated by a single beam with I ¼ I� (due to the mea-
sured exponential increase of the hot-electron energy with

10–1

10–1 100 100 10210–210–3

10–2

10–3

10–4

10–5

f h
ot

0 2 4 6 8

Intensity (1014 W/cm2)

100

80

60

40

20

0

T
ho

t (
ke

V
)

EKα(mJ/str)

Single
Two horizontal
Two vertical
Two diagonal
Four
Four-beam
calculated

Laser-beam orientations

(a)

(b)

FIG. 2 (color). (a) The measured hot-electron temperature is
plotted as a function of the measured total energy in K� for the
five laser-beam orientations tested. (b) The fraction of laser
energy converted to hot electrons (fhot) is plotted as a function
of the overlapped intensity. The four-beam hot electron genera-
tion is estimated (open diamonds) by multiplying the measured
two-beam total hot-electron energy fraction by six and plotting
the results at twice the two-beam intensity. The dashed line is a
fit to the four beam data [fhot ¼ 3� 10�8eð8I�=2Þ]. The solid line
is scaled from the fit assuming the four beam results are
dominated by the six two beam common wave modes driven
at half of the intensity [fhot ¼ 1� 10�8eð8I�Þ].
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FIG. 1 (color). (a) Schematic of the common-wave region for
two beams: Two laser beams of wave vectors k0;1 and k0;2 share
the common-plasma wave kc located in the bisecting plane
fulfilling the necessary condition jkc � k0;1j ¼ jkc � k0;2j inde-
pendent of the polarizations of the laser beams; (b) Schematic of
the seven common wave regions when four beams are used: six
two beam common-wave planes (red lines) and one four beam
common-wave line (green point).
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the laser intensity). The fact that the two beams produce a
similar total hot-electron fraction as a single beam shows
that the common-wave process is very efficient.

When comparing the four-beam and single-beam re-
sults, Fig. 2(b) shows a significant decrease in the hot-
electron energy for a given overlapped intensity (up to two
orders of magnitude for I� � 2� 1014 W=cm2). This re-
duction in the four beam experiments can be explained
heuristically on the basis of the two beam experimental
results. The addition of the hot-electron fractions measured
for six possible two beam configurations, plotted at twice
the overlapped intensity, is consistent with the fraction of
hot electrons measured when four beams are employed;
see open symbols in Fig. 2(b). This suggests that the hot
electrons generated by four beams are the result of the sum
of the hot electrons generated by six independent two-
beam interactions; i.e., the hot electrons generated by the
interaction between all four beams are not dominant.

The well-known theory of TPD [4, 5] is based on the
dispersion relation for the two electron-plasma waves with
frequency and wave vectors (!, k) and (!�!0, k� k0),
where !0 and k0 are the frequency and wave vector of the
initial electromagnetic wave [4,5]. In the case of multiple
laser beams driving a common electron-plasma wave
(!c, kc), the dispersion relation is !2

c ¼ !2
pe þ 3k2

cv
2
th;e

and for the corresponding daughter waves ð!c �!0Þ2 ¼
!2

pe þ 3ðkc � k0;iÞ2v2
th;e, where vth;e is the electron ther-

mal velocity, !pe is the plasma frequency, and k0;i (with a

norm k0 independent of i) is the wave vector of beam i. A
mathematical definition for the region where a resonant
common-wave process exists is determined by satisfying
the dispersion relations for all laser beams, cosðkc;k0;iÞ ¼
const, for i ¼ 1; . . . ; n. For a two-beam configuration, this
defines a plane in k space bisecting the wave vectors of the
two laser beams [Fig. 1(a)]. For more than two laser beams,
this condition restricts the resonant common waves either
to a line or eliminates them, depending on the laser beam
symmetry. The four-beam growth rate in this experiment is
restricted to a line [Fig. 1(b)].

The dispersion relation for the common-wave process
is derived following the TPD linear theory [4,5] for
the conditions where the collision frequency is much
smaller than the growth rate, Dð!c; �; jkcjÞ ¼
��i½�2

0;i=Dð!c �!0; �; jkc � k0;ijÞ�, where � is the

temporal growth rate, Dð!;�; jkjÞ ¼ f½1� !2
pe

!2 �
ð1þ 3k2�2

DeÞ� !2 þ i�g is the dispersion relation and �De ¼
vth;e

!pe
is the Debye length. The single-beam homogeneous

growth rate calculated in the common-wave region is
�2
0;i ¼ ð�2

0ÞSBmaxcos
2ð�iÞfc�i, where �i is the angle between

the polarization vector and the common-wave vector, fc ¼
½ðk2c � ðkc � k0;iÞ2Þ=ðk0;ijkc � k0;ijÞ�2, �i ¼ Ii

I�
, Ii is the

intensity of the laser beam i, ð�2
0ÞSBmax ¼ 2

cncme
ðk02 Þ2I� is the

maximum single-beam homogeneous growth rate squared

calculated for the overlapped intensity, c is the light ve-

locity, me is the electron mass, nc ¼ me!
2
0

4�e2
is the critical

density, and e is the electron charge. To evaluate the
maximum value of the growth rate, the minimum value
of Dð!;�; jkc � k0;ijÞ is determined by ensuring that the

dispersion relations for all daughter waves are satisfied. It
follows that Dð!;�; jkc � k0;ijÞ ¼ i� ¼ const and the

resonant common-wave growth rate is given by ð�2
0ÞMB ¼

�i�
2
0;i. A geometric function is given by normalizing the

multiple-beam growth rate squared to the maximum
single-beam growth rate squared,

ð�2
0ÞMB ¼ ð�2

0ÞMB

ð�2
0ÞSBmax

¼ fc�icos
2ð�iÞ�i: (1)

The dominant mode is determined by the maximum of
the geometric function which is a geometric factor
(fg ¼ ð�2

0ÞMB
max) that depends only on the geometry of the

laser beams, their polarizations, and their intensities rela-
tive to the overlapped intensity.
Figures 3(a) and 3(b) show the calculated geometric

functions for two beams [ð�2
0Þ2B] polarized perpendicular

and parallel to the plane defined by the laser beams (k0;1,

k0;2). The geometric functions calculated in k space are

significantly different as a result of the difference in the
polarization vectors relative to the common-wave plane,
although the geometric factor is similar for the two cases
[ð�2

0Þ2Bmax � 1]. The fact that the growth rates are the same

explains why the total hot-electron energy is measured to
be similar in the horizontal and vertical laser-beam con-
figurations. For the configuration with two horizontal
beams [Fig. 3(a)], the geometric function in the common-
wave plane form two modified hyperbolas defined by
ðky=k0Þ2 ¼ ðkx=k0Þ½ðkx=k0Þ= cosð�=2Þ2 � 1�, where � is

the angle between the two laser beams. The geometric
function decreases rapidly with ky=k0, corresponding to

the rapid decrease of the single-beam growth rates.
Figure 3(c) shows the four-beam geometric function

[ð�2
0Þ4B] plotted along the four-beam common-wave re-

gion located along the line bisecting the laser beams
[Fig. 1(b)]. The maximum value is reached for kx=k0 �
1:3 and ky=k0 � 0:3 where ð�2

0Þ4Bmax ¼ 0:5. For the same

overlapped intensity, the single-beam and two-beam ho-
mogeneous growth rates for the dominant mode are simi-
lar [ð�2

0Þ2Bmax ¼ 1], whereas the four-beam homogeneous

growth rate for the dominant mode is decreased by a factor
of 2 [ð�2

0Þ4Bmax ¼ 0:5]. These calculations support the ex-

perimental findings [Fig. 2(b)] where the single and two
beam hot electron fractions are comparable, while the
four-beam hot electron fraction is smaller.
To estimate the common-wave convective gain (in inten-

sity), the maximum common-wave homogeneous growth
rate is used in the formalism derived in Refs. [6,19], G ¼
ð16�=9Þðv2

th;e=c
2Þ�1k0L½ð�2

0ÞMB
max=!0�2. The maximum

common-wave gain for each configuration is
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Gc ¼ 6� 10�2
I�;qLn�0

Te

fg; (2)

where Te is in keV, I�;q is in 10
14 W=cm2, Ln is in�m, and

�0 is in �m. For a given laser-beam configuration (relative
beam angle and polarization), the common-wave gain is
proportional to I�;qLn=Te.

Figure 4 shows the hot electron fraction as a function of
the calculated common-wave gain for the dominant mode
[Eq. (2)]. When there are multiple common-wave regions,
the dominant mode corresponds to the maximum common-
wave gain. For all laser beam configurations, except for
two diagonal beams, the hot electron fraction as a function

of the gain is similar. For diagonal beams, the calculations
underestimate the value of the gain.
In summary, when maintaining the overlapped laser

beam intensity, the total energy in hot electrons is mea-
sured to be similar when using one or two polarized beams
and significantly reduced with four polarized beams. A
linear common-wave model is consistent with these obser-
vations. For ignition designs, these results suggest that the
common-wave process can be reduced by limiting the
number of beams that are symmetric to one another or by
reducing the geometric factor.
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(Gc) for the dominant mode.
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