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The invariant torus of nonintegrable systems breaks up in complexified phase space. The breaking

border is expected to form a natural boundary (NB) along which singularities are densely condensed. The

NB cuts off the instanton orbit controlling the tunneling transport from a quantized invariant torus, which

might result in a serious effect on the tunneling process. In the present Letter, we provide clear evidence

showing that the presence of the NB is observable as an anomalous enhancement of the tunneling wave

amplitude in the immediate outer side of the NB.
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Poincaré showed in his well-known theorem of non-
integrability that if an integrable system is perturbed there
are no analytic integrals of motion other than energy, and
he considered it as a ‘‘fundamental problem of mechanics’’
to clarify what is happening after the perturbation destroys
the integrals of motion [1]. As was proved by Kolmogorov,
Arnold, and Moser (KAM), most of the tori which con-
serve quasiperiodic motion and the very prototype in the
integrable limit, survive if the perturbation strength is weak
enough [2].

However, surviving tori are no longer analytically entire
objects but they break up in general in the complexified
phase space since there appears the natural boundary (NB)
along which singular points densely accumulate [3]. In the
nearly integrable regime, in which the measure of a chaotic
set is exponentially small, the really problematic aspect of
the fundamental problem manifests itself as the NB which
is hardly visible from the real phase space.

However, it might be of crucial significance in quantum
tunneling problems even in the nearly integrable regime:
the torus satisfying the EBK condition is quantized, and the
fully real part of the torus semiclassically well reproduces
the principal part of the corresponding eigenfunction, but a
serious problem arises in the tunneling components. The
subset of the complexified tori contributing to the tunneling
component in general encounters the NB and the tunneling
tail loses its semiclassical support beyond the NB. If this
effect is not only mathematical but also physically mean-
ingful, the presence of the NB, which is hardly visible from
the real phase space, could be observed in tunneling
phenomena.

The serious problem caused by the NB was first noticed
by Creagh [4], in the application of Wilkinson’s formula to
nearly integrable systems [5]. He also showed that the
presence of the NB seems to give a non-negligible effect
on the radiation pattern frommicrocavities [6]. The present
authors showed that, in the time domain semiclassics, the

major tunneling orbits called the ‘‘Laputa chains’’ [7],
which are guided by complexified stable and unstable
manifolds (CSUM), are significantly influenced by the
NB if the perturbation is not very weak [8]. There have
been several authors who mention the possible role of the
NB, but to the authors’ knowledge, no direct evidence
revealing the crucial effect of the NB on the tunneling
effect has been presented [9–12]. The objective of the
present Letter is just to provide it.
The model we treat in the present Letter is the quantum

map

U ¼ e�ip2=4@e�iVðqÞ=@e�ip2=4@; (1)

with a cubic potential VðqÞ ¼ �ð2q2 þ q3=3Þ, which
has a barrier with the height Vmax ¼ 32�=3 [8]. The clas-
sical map of the above model, ðq0; p0Þ ¼ ðqþ pþ
V0ðqþ p=2Þ=2; pþ V 0ðqþ p=2ÞÞ, is conjugate to the
well-known Hénon map, while in the limit � ! 0, the
system (1) is well approximated by the standard one-

dimensional model of barrier tunneling: U1¼e�i�H1=@

withH1¼p2=ð2�ÞþVðqÞ, which is completely integrable.
In the KAM region, the invariant tori satisfying the

EBK quantization condition
H
pdq=2�¼ðnþ1=2Þ@ðn¼

0;1;���Þ in the present case form quantum resonances with
finite lifetime due to tunneling. With � increasing, the
KAM region becomes surrounded by chaotic regions de-
veloped around the homoclinic orbits of the saddle point
S ¼ ð�4; 0Þ on the top of the potential barrier, and com-
plex tunneling orbits guided by CSUM, which can be
roughly identified with the Julia set, dominate the tunnel-
ing process [8]. On the contrary, the tunneling lifetime of
the integrable model H1 can be evaluated by using
instanton.
First of all, we take the classical invariant torus as a basis

of our argument. It is parametrized by the angle variables �
through the conjugation function ðq; pÞ ¼ ðQð�Þ; Pð�ÞÞ ac-
cording to the KAM theorem. The conjugation function,
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which is a 2�-periodic function, is written as Qð�Þ ¼
½qð� þ !=2Þ þ qð� � !=2Þ�=2; Pð�Þ ¼ qð� þ !=2Þ�
qð� � !=2Þ by using a standard representation of the
position function qð�Þ satisfying the functional equation
qð�þ!Þ þ qð��!Þ � 2qð�Þ ¼ �V 0ð�Þ. This is equiva-
lent to the classical mapping rule, where ! denotes the
irrational rotation number of a given torus. The function
qð�Þ is usually expanded as the Fourier series qð�Þ ¼P

nane
in� ¼ P

nanz
n with a�n ¼ an 2 R, where z ¼ ei�.

The Fourier expansion has the radius of convergence � ¼
1=limn!1a

1=n
n , if there exists a singular point at jzj ¼ �.

The singular point propagates with the irrational rotation
number!, and as a result the singular points are distributed
densely along the circle jzj ¼ �, which forms the NB [3].
If the invariant torus satisfies the quantization condi-
tion,

R
2�
0 Pð�ÞQ0ð�Þd�=2� ¼ ðnþ 1=2Þ@, then the subset

T of the torus which semiclassically contributes to the
q� represented eigenfunction is given by

T ¼ fðq; pÞ ¼ ðQð�Þ; Pð�ÞÞjImQð�Þ ¼ 0; jIm�j< log�g;
(2)

which is represented by the blue lines on the complex
�-plane illustrated in Fig. 1(b). We further define T r and
T i as T r¼fðq;pÞjðq;pÞ2T ;Imp¼0g andT i¼T nT r,
respectively. As indicated in Fig. 1, T r is the real torus
corresponding to the invariant circle on the real qp-plane
bouncing between the turning points q2 and q1, which
semiclassically contributes to the principal part of the
wave function. On the other hand, the remaining part of
T , i.e., T i, is the instanton supporting the tunneling part
of the wave function. Since Qð�Þ ¼ Qð��Þ and Pð�Þ ¼
�Pð��Þ, blue lines � ¼ �i� and � ¼ �� i� (�ð>0Þ 2
R) on the complex �-plane in Fig. 1 are obviously con-
tained in T i. The set T i is not confined in the real
qp-plane, and its projection onto the real qp-plane is
shown in Fig. 1(a) as the two blue lines along q ¼ 0

emanating from the classical turning points q ¼ q2 ¼
Qð�Þ and q1 ¼ Qð0Þ.
To discuss the crucial role of the NB, indicated by the

red line in Fig. 1, we consider the integrable limit H1. The
instanton branches (and also the real torus component as
well) of the integrable model are indicated by green lines,
and they are almost indistinguishable from the setT of the
nonintegrable model if � is small. The instanton branches
of the integrable model are complete in the sense that they
support the tunneling tails extending toward þ1 and �1
from the two classical turning points q ¼ q1 and q2, re-
spectively; the second branch is particularly important
because it corresponds to the instanton orbit responsible
for the tunneling transport toward q ¼ �1 going through
the potential barrier. Indeed, as � increases along the
second branch, ðq; pÞ ¼ ðQð�Þ; Pð�ÞÞ passes through the
classically forbidden region and reaches the third turning
point q3ð<q2Þ, from which a real branch emanates and
ends at a pole of qð�Þ, which provides a real orbit going
toward q ¼ �1 on the qp-plane and supports the tunnel-
ing tail extending toward q ¼ �1.
The contributing set of the nonintegrable model (1) al-

most overlaps with that of the integrable model, but a
crucial difference is that the instanton branches of the
nonintegrable model intersect with the NB at a certain � ¼
��, which corresponds to q ¼ q� � Qð�þ i��Þ on the
qp-plane. Until the intersection q ¼ q� the tunneling tail
can be well approximated by the semiclassical wave func-
tion� ¼ AðqÞ expfiSðqÞ=@g (the Maslov index is omitted),

where AðqÞ ¼ 1=jQ0ð�Þj1=2 and Sðq ¼ Qð�þ i�ÞÞ ¼R�
0 iPði�0 þ �ÞQ0ði�0 þ �Þd�0. But beyond the intersec-

tion, there is no analytic continuation of the invariant
torus, meaning that we lose the semiclassical basis for
tunneling tails.
The NB is certainly a strict border at which analyticity is

broken, and quite important when one argues the mathe-
matical nature of given functions. But it is not obvious that
any physical reality is significantly influenced by the NB
and it could be that the NB is a purely mathematical
phenomenon. Therefore, the fundamental question here
arising is whether the interruption by the NB is physically
significant or not. However, we do not have any theoretical
method to predict how serious the question is in classical
mechanics, so even more in quantum mechanics: to answer
the question we have to go beyond the KAM theory.
If the NB is not critical in quantum mechanics, it will be

possible to go over the NB by a suitably devised approxi-
mation which can formally eliminate the nonintegrable
part of U. As a powerful approximation we here employ
a Baker-Hausdorff-Campbell type expansion which is a
very efficient algorithm transforming U into a unitary
transformation of a one-dimensional Hamiltonian with
H1 as the lowest order term. Let us define the effective
Planck constant k ¼ @=

ffiffiffi
�

p
and the new momentum p0 ¼

�ikd=dq, then U ¼ e�i�p02=4e�i�VðqÞe�i�p02=4, where

FIG. 1 (color online). An example of the setT on the complex
� plane (left), and its projection onto the real qp-plane computed
for � ¼ 0:05 (right). See the text. The yellow curves are the
Poincaré plot. (The dotted lines do not contribute because of the
Stokes phenomenon.)
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� ¼ ffiffiffi
�

p
=k ¼ �=@. Then the Baker-Hausdorff-Campbel-

type expansion leads to

U� expf�i
ffiffiffi
�

p X1

‘¼0

ði�Þ2‘H‘þ1ðq; p0Þ=kg; (3)

where H‘þ1ðq; p0Þ is a polynomial of q and p0, and

HðmÞ
eff ðq; p0Þ ¼ P

m
‘¼0ð��2Þ‘H‘þ1ðq; p0Þ is classically an in-

tegrable one-dimensional Hamiltonian, but note that this
expansion is of course only a formal asymptotic expansion.
If � is small (practically j�j< 0:1), the classical invariant

set HðmÞ
eff ðq; p0Þ ¼ E approximates the real torus T r of

Eq. (1) at the precision of Oð�2mþ3Þ. We executed the
expansion up to m ¼ 9 by using a computer algebra
system.

We can expect that the semiclassical approximation

based on T i of the effective Hamiltonian HðmÞ
eff reproduces

very well the tunneling tail of the exact eigenstates of U at
least in the range up to the intersection with the NB, namely

q� < q< q2. Moreover, T i of H
ðmÞ
eff has no singularities in

T i and so it can be extended beyond q < q�. As is shown
in Fig. 2(a), if � is small but @ is not very small, the
fully extended semiclassical approximation reproduces the
whole of the tunneling component of the exact eigenfunc-
tion. These observations allow us to use the T given by

HðmÞ
eff ðq; p0Þ ¼ E as a pseudoextension of the exact T be-

yond the NB, which will provide a nicely improved instan-
ton approximation to tunneling components, if a properly
large m is chosen. (In practice we take m ¼ 8 or 9.)

For smaller @, the fully quantum eigenstate for HðmÞ
eff has

a tunneling amplitude much smaller than the numerically
attainable precision, and so we use the semiclassical in-
stanton approximation instead of the rigorous eigenstate of

HðmÞ
eff . Since HðmÞ

eff is integrable, the semiclassical approxi-

mation works very well in the small limit of @.
The improved instanton approximation using the inte-

grable model HðmÞ
eff works very well, but an extensive

numerical investigation reveals that as @ is reduced there
exists a threshold of @ below which the exact tunneling
amplitude starts to deviate markedly from the semiclassical
one. A quite interesting and paradoxical fact is that the
threshold value of @ decreases as the quantum number n
decreases. Therefore, if @ is fixed at a relatively small
value, such a transition takes place as we move from the
highest classically bounded state n ¼ nmax to the ground
state. Note here that we take a sufficiently small value � ¼
0:05 such that no nonlinear resonances with quantum

mechanically recognizable size, i.e., � ffiffiffi
@

p
) are visible on

the Poincaré plot. As mentioned above, at a relatively large
value @ ¼ @0 �

ffiffiffi
�

p
=1:5 the tunneling amplitude follows

exactly the instanton amplitude, as shown in Fig. 2(a), but
when @ is halved, @ ¼ @0=2, as in Fig. 2(b) there emerges a
state with the quantum number nc beyond which the tun-
neling amplitude is drastically enhanced from the instanton
amplitude. As @ is halved further, the drastic transition is
more evident [see Fig. 2(c)]. This sudden transition implies
that the tunneling process due to the instanton is over-
whelmed by some other coexistent process. This shares
some features with the crossover from the instanton to
the CSUM mechanism reported for a multidimensional
scattering-tunneling process [13]. But the transition re-
ported in it is smooth and is not so sharp as in the present
case, which might reflect the analyticity of the perturba-
tion. We note that the sharp transition demonstrated above
is observed by the tunneling rate defined as the imaginary
part of the eigenangle, because it is proportional to the
square of the tunneling amplitude far from the potential
barrier.
Next, we focus our attention on the relation between

the observed drastic increase of tunneling amplitude and
the NB. As shown in Fig. 1, the instanton branch always
intersects with the NB, and moreover, until the intersec-
tion, the instanton approximation based on the existing set
T i of the quantum map should work well. Therefore, the
increase of the tunneling amplitude should occur out of
the intersection, that is, q < q�. Indeed, as demonstra-
ted above, the instanton wave function of the effective

Hamiltonian HðmÞ
eff approximates the exact tunneling tail

at least up to q�, and moreover, it approximates well the
exact tunneling rate if the transition does not take place.

Therefore, we use T i of H
ðmÞ
eff as the quasiextension of the

exact T i beyond q ¼ q� and use the instanton wave func-

tion �inst
n ðqÞ of HðmÞ

eff as the reference for the comparison

FIG. 2 (color online). Exact tunneling amplitude (blue) com-

pared with instanton approximation (red) of HðmÞ
eff , where !eff ¼

2�=
ffiffiffi
�

p
. The amplitude is computed in the quasistationary re-

gime far from the barrier, i.e., q � q3. See the text and Ref. [14].
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with the exact wave function �nðqÞ. To clarify quantita-
tively the expected increase beyond q ¼ q�, we define
the ratio

�nðqÞ ¼ �nðqÞ=�inst
n ðqÞ; (4)

as a function of q. Since q� is the projection of the
intersection of the instanton branch with the NB onto the
q-coordinate, and varies with the quantum number n, we
here introduce q�ðnÞ to show explicitly its n dependence.
The position of q� is most distant from the turning point q2
at the ground state (n ¼ 0), but it comes closer to q2 as we
move from the ground state n ¼ 0 toward the classically
bounded highest excited state (see Fig. 3). We also denote
by q ¼ qcðnÞ the characteristic q beyond which j�nðqÞj
increases notably from unity. What we are most interested
in is the relation between qcðnÞ and q�nðnÞ.

In Fig. 3, we show how the ratio j�nðqÞj deviates
from unity as a function of q for n scanned from 0 to
nmax. Fig. 3(a) corresponds to Fig. 2(a), where @ ¼ @0 is
relatively large and no transition from the instanton tun-
neling amplitude occurs. Then �nðqÞ is almost equal to 1,
indicating that the instanton approximation works very
well. As @ is halved the transition from the instanton

happens as Fig. 2(b) depicts, and there emerges the thresh-
old quantum number nc below which �nðqÞ exhibits an
exponential increase at a certain q ¼ qcðnÞ. The increase
saturates beyond q3.
For n < nc, the threshold qcðnÞ moves toward the point

q ¼ q�ðnÞ. As @ is halved further, the curve qcðnÞ overall
shifts toward q� and quickly reaches just the outer side of
q ¼ q�ðnÞ as n decreases from nc. With further decrease in
n, the curve runs almost in parallel with q�ðnÞ. In Fig. 3(d),
we show the same result for a larger � (� ¼ 0:15) and the
same @ as in Fig. 3(c), where qcðnÞ moves more closely to
q�ðnÞ with n, implying a more serious effect of NB.
The result of numerical studies summarized as

(i) nmax � nc is insensitive to @, but it increases as �
decreases, (ii) as n is reduced from nc, the distance
jqcðnÞ � q�ðnÞj tends to a finite value and (iii) the distance
jqcðnÞ � q�ðnÞj goes to zero as @ ! 0. These results mean
that, if @ is sufficiently small, in most of the eigenstates
with a quantum number less than nc, drastic enhancement
from the instanton tunneling amplitude occurs immedi-
ately outside of the intersection q ¼ q�ðnÞ with the NB.
We have demonstrated clear evidence revealing a critical

role of the NB in the tunneling problem. In particular, the
observed transition from the instanton tunneling process
is shown to be closely related with the presence of the NB.
It is not necessary to make @ ‘‘extremely small’’ in order to
observe the effect of the NB, which manifests itself as a
remarkable enhancement of tunneling amplitude just in the
outer side of the NB. This fact implies that the enhance-
ment beyond the NB is not due to a mechanism such as
resonance assisted tunneling caused by some particular
nonlinear resonances. These facts strongly suggest that
the ‘‘fundamental problem of mechanics’’ has a particular
meaning in the quantum tunneling problem. Detailed theo-
retical analyses of the transition process will be given in a
forthcoming paper.
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