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Wave transport in a media with a slow spatial gradient of its characteristics is found to exhibit a

universal wave pattern (‘‘gradient marker’’) in a vicinity of the maxima or minima of the gradient. The

pattern is common for optics, quantum mechanics, and any other propagation governed by the same wave

equation. Derived analytically, it has an elegantly simple yet nontrivial profile found in perfect agreement

with numerical simulations for specific examples. We also find resonant states in continuum in the case of

quantum wells, and formulated criteria for their existence.
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Wave patterns in inhomogeneous media or confining
structures are of great interest to quantum mechanics
(QM), optics and electrodynamics, acoustics, hydrody-
namics, and chemistry. Examples include wave packets
in atoms [1], Ghladny patterns in acoustics, EM resonator
and waveguide modes [2], Anderson localization in dis-
ordered systems [3], soliton formation [4] due to nonline-
arity, including atomic solitons in bosonic gas [5], as well
as giant waves near caustics [6], waves in chemical
reactions [7], dark-soliton grids [8], ‘‘scars’’ in ‘‘quantum
billiard’’ [9], ‘‘quantum carpets’’ in QM potentials [10],
nanostratification of local field in finite lattices [11], etc.
In all of those, the presence of multimodes or a broadband
spectrum is a prerequisite for interference and pattern
formation in inhomogeneous or confining structures.

In this Letter we show, however, that a localized wave
pattern—an immobile single-cycle intensity profile—can
emerge in a single-modewave in the vicinity of a minimum
or maximum of the gradient of a QM potential or optical
refractive index. The phenomenon is universal for both
optics and QM, and for any other propagation described
by awave equation, (1) below.Whatmakes it unusual is that
it emerges in media with no potential wells and only a
smooth inhomogeneity yielding no reflection—and is or-
iginated by a purely travelingwavewith apparently no other
modes to interfere with. We found, however, that this wave
here generates a cotraveling but localized ‘‘satellite’’ of
slightly different phase and amplitude resulting in ‘‘self-
interference.’’ Thewave ideally is not trapped and carries its
momentum and energy flux unchanged through the area. To
a degree, the patternmimics a 2nd order spatial derivative of
the refractive index (or potential function); it would be
natural to call it a ‘‘gradient (G) marker’’. In QM it may
be most pronounced for an above-barrier propagation of an
electron in continuum over smoothly varying potential; in
solid state itmight emerge above the critical temperature for
the Anderson localization to vanish. Even for a potential
well, when the energy of electrons exceeds the ionization
potential and there is no trapping, theGmarkers emerge as
the main nonresonant localized feature.

To demonstrate the effect and elucidate analytical results
(to be compared with numerical simulations) we consider a
1D case written, for the sake of compactness, in ‘‘optical’’
terms, using space-varying refractive index nðxÞ; yet we
consistently ‘‘translate’’ all the effects and approaches into
QM terms. A 1D spatial dynamics of an!-monochromatic

plane wave with linearly polarized electrical field ~E ¼
êpEðxÞ expð�i!tÞ þ c:c:, propagating in the x axis (here

êp ? êx is a polarization unity vector), is governed by the

wave equation

E00 þ n2ð�ÞE ¼ 0; � ¼ xk0; (1)

where k0 ¼ !=c ¼ 2�=�0, and ‘‘prime’’ stands for d=d�.

(For ~H field, êx ? ~H ? êp, one has H ¼ �iE0 in non-

magnetic materials; for a traveling wave, jHj ¼ njEj, if
n ¼ const:) In QM terms, this corresponds to 1D scattering
of a particle in continuum by a potential UðxÞ, with E
replaced by a wave function, c , of a particle, H—by

ð�ic 0Þ ¼ pQ=k0@, n—by pC=k0@, where pQ and pC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m½E0 �UðxÞ�p

are its quantum and classical momenta
respectively, and E0— full energy. We will consider only
the case n2 > 0, where one can attain a no-reflection mode
of the main interest to us here; otherwise, with n2ð�Þ
crossing zero, the system may exhibit a full reflection
characterized by an Airy function as, e.g., near a turning
point in QM [12], or a critical point in plasma [2], or
caustics in optics and water waves [6].
Equation (1) is ubiquitous in physics and engineering.

Since few known functions nð�Þ allow for analytical solu-
tions, numerical simulations and/or approximate analytical
solutions in general have to be used. Of the most interest to
us here will be the limit of adiabatically slow variation in
space, when gradient parameter�� ðk0LnminÞ�1, where L
is a spatial scale of inhomogeneity, is small,� � 1, which
corresponds to a quasiclassical case in QM. The reflectivity

R in this case vanishes as R ¼ Oðe�A=�Þ [12,13], where
A ¼ Oð1Þ (usually A > 1), and reflection can be neglected
by a large margin. A solution is provided then by a

WKB approximation [12] as traveling waves, Cð�Þ
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expð�i
R
nd�Þ=n1=2. Considering, e.g., a forward wave,

and setting n0 ! 0 at j�j ! 1, where we normalize its
intensity by setting njEj21 ¼ 1, we look for the next ap-
proximation as a perturbed WKB solution

E ¼ ½1þ �ð�Þ�ei
R

nd�=n1=2 with � ¼ �þ i�; (2)

where �ð�Þ (j�j2 � 1) is a slow-varying complex func-
tion, � ! 0 at j�j ! 1, � and �-real; as we will see later
on, j�jmax � j�0jmax ¼ Oð�2Þ. Using ansatz (2) in Eq. (1),
setting real and imaginary parts of the sum of all the
perturbations terms to zero, and collecting the terms of
lower order in� in each one of them, we obtain for the real
part an equation consisting of Oð�2Þ terms

�0 ¼ �ðn0=n3=2Þ0=4n1=2 (3)

and for the imaginary part—an equation consisting
of Oð�3Þ terms, the integration of which yields � ¼
�ð�2 þ �0=nÞ=2, where we set the integration constant
to zero due to the above condition ��1 ¼ 0. [It is worth
noting that in the end, all the terms with�2 get canceled, so
there is no need for further integration of Eq. (3).] We can
finally arrive at a G-marker intensity by calculating the
perturbation, �Ið�Þ � I � 1, of the normalized field inten-
sity I � njEj2 ¼ ð1þ �Þ2 þ �2 � 1þ 2�þ �2, retain-
ing the terms lowest in �, and obtaining to oð�2Þ:

�Ið�Þ ¼ ��0=n ¼ ðn0=n3=2Þ0=4n3=2: (4)

In the vicinity of a gradient peak, �Ið�Þ makes an asym-
metric single-cycle shape, with its middle point shifted by
Oðk0LÞ toward the area with a lower refractive index (or
higher potential); its higher (and positive at that) peak is
also located in the same area, see Figs. 1 and 2. One can see
that �Ið�Þ more or less mimics a second derivative of n.
Equation (4) can also be obtained via quasiclassical ap-
proximation in QM [12], whereby one has to search for
high-order corrections for the phase of c as a function of
the classical momentum pC, after which it has to be
translated into correction to intensity.

How far the asymptotic result (4) can be pushed beyond
the limit � � 1, and what is a critical �cr ¼ Oð1Þ, can
be explored only by numerical simulations, which also
helps to reveal a nature of a small parameter � (which
appears to be substantially different from a standard
ðjn0j=n2Þmax � 1 [14]). Before comparing Eq. (4) to nu-
merical simulations for specific profiles nð�Þ and various
�, let us make sure it conforms to the conservation of
EM energy flux, i.e., (time-averaged) magnitude, �S, of the

Poynting vector, ~S ¼ ~E� ~H=2 (in Abraham’s form)
in the general case. Writing S ¼ ðEe�i!t þ c:c:Þ.
ðHe�i!t þ c:c:Þ=2, and t-averaging it, which amounts
here to omitting terms with e�2i!t, we have �S ¼
ReðEH	Þ ¼ ReðiE	0EÞ. In QM terms, it corresponds to

      0.00

      1.00

      2.00

      3.00

-8 -6 -4 -2  0  2  4  6  8R
ef

ra
ct

iv
e 

in
de

x,
 n

, a
nd

 p
ot

en
tia

l, 
U

, p
ro

fil
es

Normalized distance 2x/L = 2 g ξ

a

U(ξ)

n(ξ)

n2

U0

n1

inc. particle energy E0

traveling wave

      0.00

      0.01

-8 -6 -4 -2  0  2  4  6  8
N

or
m

al
iz

ed
 w

av
e 

in
te

ns
ite

s,
 δ

I/I
in

b

δIA
δIN

µ/µcr = 3/2

    -0.002

     0.000

     0.002

     0.004

     0.006

-8 -6 -4 -2  0  2  4  6  8

N
or

m
al

iz
ed

 w
av

e 
in

te
ns

ite
s,

 δ
I/I

in

c

δIAδIN

µ/µcr = 1

    -0.001

     0.000

     0.001

     0.002

-8 -6 -4 -2  0  2  4  6  8

N
or

m
al

iz
ed

 w
av

e 
in

te
ns

ite
s,

 δ
I/I

in

d

δIA
δIN

µ/µcr = 2/3

FIG. 1. (a) Refractive index, n (and potential U) soft-step
spatial profiles, n1 ¼ 1:5 and n2 ¼ 3, �cr � 0:24;
(b)–(d) G-marker intensity, �I, vs distance x=2L for various
parameters�; curves:�IN-numerical, and�IA- analytical, Eq. (4).
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mathematical expectation of a particle momentum,
hc jp̂Qjc i, p̂Q ¼ �i@d=dx. Using Eq. (2) and retaining

the terms of the lowest (2nd here) order in �, we have
�S ¼ Iþ �0=n; due to Eq. (4) it confirms that �S ¼ 1 ¼ inv
to oð�2Þ.
For numerical simulations of Eq. (1) with an arbitrary

profile nð�Þ and arbitrary �, we broke it into two 1st order
(Maxwell, in EM-case) equations: E0 ¼ iH; H0 ¼ in2E.
To model a ‘‘soft step’’ nð�Þ, we use a function (Fig. 1(a)):

nðxÞ ¼ n1 þ ðn2 � n1Þ½1þ tanhð2x=LÞ�=2 (5)

with controllable L, ni, and its gradient parameter as

� ¼ gðn�1
1 þ n�1

2 Þ; g ¼ ðk0LÞ�1 ¼ �0=2�L (6)

[14]; the spectral dispersion of ni can be safely ignored
here. The calculations with an arbitrary � are done
by using a multipoint algorithm and a ‘‘reverse propaga-
tion’’ mode, whereby we start at � 
 g�1, postulate
that only one (transmitted) field remains there, E1 !
expðin2�Þ=

ffiffiffi
n

p
2, (the Sommerfeld’s condition), and then

go backward, till reaching a symmetrically located area
in front of the gradient, � � �g�1, where we record the
intensity of an incident wave, Iin ¼ n1jEþH=n1j2=4, and
then normalize all the stored intensities by Iin [15]. The
precision of calculations is checked against the deviation
of �S, at each point from that recorded at the incidence;
typically it was better than 10�6.
The retroreflection from the gradient area is strongly

suppressed and the G marker is well emphasized (see,
e.g., Figs. 1(c) and 1(d)) provided that �<�cr, where
parameter �cr was found by us to be almost universal,
�cr � ð2�Þ�1 at rn � n1=n2 þ n2=n1 
 1, and slightly
increasing to �cr � 1=4 near n1 � n2. The highest (posi-
tive)G-marker peaks, �Imax, can easily reach a few percent
of the intensity, I, especially at rn 
 1. In the case of a
‘‘shallow’’ soft step, jn1 � n2j � ~n=2, ~n ¼ ðn1 þ n2Þ=2
[in QM this would correspond to a kinetic energy E0

much higher than the drop of potential, U0, E0=U0 � ~n=
jn1 � n2j 
 1], the maxima and minima of �I are almost
of the same magnitude,

j�IMj � 2g2jn1 � n2j=ð53=2~n4Þ (7)

and located at x � �L=4. (In general, the parallel between
optics and QM can be guided by the relationship U0=E0 ¼
1�min½ðn21=n22Þ; ðn22=n21Þ�.)
Figures 1(b)–1(d) for the case of n1 ¼ 1:5, n2 ¼ 3,

�cr ¼ 0:24, show numerical simulations of spatial dynam-
ics of �IN , converging amazingly fast to an asymptotic
analytical result for a G-marker intensity, �IA, Eq. (4), as
soon as � � �cr. Figure 1(b) with �=�cr ¼ 3=2 shows a
residual reflection giving rise to an oscillating structure
(partial standing wave), comparable in its amplitude to a G
marker, while Fig. 1(c) (� ¼ �cr) depicts a distinct and
strong G marker formed even at L � �0=2. Finally, an
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FIG. 2. (a) Refractive index plateau, n (and potential well U)
profiles, with n1, n2, and �cr same as in Fig. 1; (b,c) �I, vs x=2L
for �>�cr (b), and �<�cr (c), with �IN and �IA as in
Fig. 1; (d) resonant state in continuum (see the text).
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inhomogeneity with L ¼ �0 [Fig. 1(d), �=�cr ¼ 2=3] is
sufficient to produce a very clean G marker.

We move now to investigate G-marker formation by a
potential well (or a refractive index plateau) by modeling it
with an ‘‘up-and-down’’ double step, Fig. 2(a):

nðxÞ ¼ n1 þ ðn2 � n1ÞðTþ � T�Þ=2 tanhðD=LÞ; (8)

where T� ¼ tanh½ð2x�DÞ=L�, and D is a controllable
spacing between the steps. For D � L, it becomes nðxÞ ¼
n1 þ ðn2 � n1Þ=cosh2ð2x=LÞ, but for our purposes here we
choose a more boxlike well, D=L ¼ 8, which has � de-
fined by Eq. (6), and the same �cr as for a soft step (5). As
expected, both walls form G markers symmetric to each
other, Figs. 1(b) and 1(c), so that to form aGmarker it does
not matter which way a wave is arriving—from the lower
index or from the higher one. At�>�cr one can see some
oscillations, same as for a single wall in Fig. 1(b) for the
same �, and ideally clean G markers for �<�cr, similar
to Fig. 1(d) for the same �.

The major difference here comes, however, in the area
�>�cr. Here, at a certain (countable) set of points in the
continuum, while there are strong oscillations within a
potential well, which indicates a significant wave reflection
between G markers, there is no reflection from the entire
potential well, see Fig. 2(d). That confined partially stand-
ing wave is a signature of a resonant state in a finite-depth
quantum well with rigid walls, most known in the case of a
finite rectangular box. Figure 2(d) depicts one of those
states with E0=U0 ¼ 4=3. The condition for them to
emerge above a quantum well is a significant rigidity of
the well’s walls, �>�cr. In the limit � 
 �cr, their
energies in the continuum coincide with those of a finite
box, or in turn—with the eigenstates of a box with
infinitely-high walls, EN ¼ ðN@�Þ2=2mD2, where N is a
natural number, provided that EN >U0. In optics terms,
they correspond to full-transmission resonances of a Fabri-
Pierrot resonator with semitransparent mirrors. In the solid
state, these states may reveal themselves during a �-kick
field ionization via production of spatially stratified
bunches in photoelectron current, whose kinetic energies
coincide with those of the resonant states [16].

Potential uses or applications of 1D (or almost 1D) G
markers can be envisioned, such as (a) observation of
quantum ‘‘traces’’ in continuum, i.e., beyond ‘‘quantum
carpets’’ [9] in potential wells, (b) detection and control of
slight changes of optical fiber parameters [17], (c) the
diagnostics of cold underdense plasma, (d) medical
surface-wave ultrasound tomography, (e) detection of the
movement of near-shelf profiles of the bottom of oceans
and rivers by space- or air-borne photography of the pat-
terns of wind-driven gravitation waves, as well as
(f) contour detection and tracing of submerged large mov-
ing manmade objects or whales in the ocean.

A 2D and 3D expansion of the theory may need to be
developed for other potential applications of G markers

such as (g) the ‘‘tomography’’ of quantum landscape in
disordered solid-state at above-critical temperature [3],
(h) a bulk tomography of opaque fluids (e.g., oil or muddy
water) by using nonpenetrating surface EM or acoustic
waves, or of solid-state bodies (e.g., in ‘‘introvision’’ of
computer chips, or lacunas in blobs of metallic alloys or
glass), as well as (i) in plasma- and astrophysics.
In conclusion, we predicted the formation of a universal

feature in wave transport in inhomogeneous media—a
standing single-cycle spatial modulation of wave inten-
sity—gradient marker—located in closed vicinity of the
maximum or minimum of a gradient of refractive index or
potential function. We found a critical condition for a G
marker to be resolved on the background of residual re-
flection. In the presence of a trapping potential, we also
found resonant states or modes in the continuum at the
energies above photoionization and formulated the condi-
tion of those modes to exist when G markers are not
dominant.
This work is supported by AFOSR. I am grateful to B. Y.

Zeldovich for fruitful discussions.
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