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Quantum optimal control theory (QOCT) provides the necessary tools to theoretically design driving

fields capable of controlling a quantum system towards a given state or along a prescribed path in Hilbert

space. This theory must be complemented with a suitable model for describing the dynamics of the

quantum system. Here, we are concerned with many electron systems (atoms, molecules, quantum dots,

etc.) irradiated with laser pulses. The full solution of the many-electron Schrödinger equation is not

feasible in general, and therefore, if we aim for an ab initio description, a suitable choice is the time-

dependent density-functional theory (TDDFT). In this Letter, we establish the equations that combine

TDDFT with QOCT and demonstrate their numerical feasibility.
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The quest for systems able to perform quantum comput-
ing [1], the synthesis of design molecules by laser-induced
chemical reactions [2], or the control of electron currents in
molecular switches using light [3] may benefit from the
recent advances in the field of design and synthesis of
laser pulses specially tailored to perform specific tasks
[4]. The laser pulse creation and shaping techniques have
improved impressively over the last decades, and the area
of experimental optimal control has therefore become a
well-established field.

Such pulses can also be theoretically derived with the
help of quantum optimal control theory (QOCT) [5]. This
theory is rather general in scope, and its basic formulation
makes no assumptions on the nature and modeling of the
quantum system on which the pulse is applied. In practice,
the solution of the QOCT equations requires multiple
propagations, both forward and backward, for the system
under study. Since these propagations are in general un-
feasible for many-particle systems, few-level simplifica-
tions and models are typically postulated when handling
the QOCT equations. Unfortunately, these simplifications
are not always accurate enough: strong pulses naturally
involve many electronic levels, and normally perturbative
treatments are not useful. Nonlinear laser-matter interac-
tions must sometimes be described ab initio.

In this Letter, we are concerned with many-electron
systems irradiated with femtosecond pulses, with inten-
sities typically ranging from 1011 to 1015 W cm�2—a non-
linear regime that nevertheless allows for a nonrelativistic
treatment. This may lead to a number of interesting phe-
nomena, e.g., above-threshold or tunnel ionization, bond
hardening or softening, high harmonic generation, photo-
isomerization, photofragmentation, Coulomb explosion,
etc., [6]. The control of these processes should be treated

with an electronic first principles theory; some possibilities
are, for example, the time-dependent configuration inter-
action or time-dependent multiconfiguration Hartree-Fock
[7,8] theories. However, the time-dependent density-
functional theory [9] (TDDFT) has emerged as a viable
alternative to more computationally expensive approaches
based on the wave function.
In TDDFT, the system of interacting electrons is sub-

stituted by a proxy system of noninteracting electrons—the
‘‘Kohn-Sham’’ system, which is computationally much
less demanding. The theory guarantees the identity of the
electronic densities of the two systems and existence of
a density functional for each possible observable, thus
allowing the computation of any property without having
to deal with the many-body wave function. The theory is
however hindered by the lack of knowledge of the precise
external potential seen by the auxiliary noninteracting
system. Fortunately, a number of valid approximations
have been developed over the years, which have made
of the TDDFT a computationally efficient possibility to
describe many processes.
We are thus led to the necessity of inscribing the TDDFT

into the general QOCT framework. We will lay down and
discuss the equations that result when TDDFT is used to
model the system. Then, in order to demonstrate its com-
putational feasibility, we present one sample calculation: a
2D two-electron system optimally driven between two
potential wells.
In the spirit of TDDFT, we substitute the problem of

formulating QOCT in terms of a real interacting system by
formulating the optimization problem for the noninteract-
ing system of electrons. The equations of motion for the
single-particle electronic orbitals of this system, also
known as the time-dependent Kohn-Sham equations, are
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ð ~r; tÞ ¼ ĤKS½nðtÞ; u; t�’ið~r; tÞ ¼ � 1

2
r2’ið~r; tÞ

þ v0ð~rÞ’ið ~r; tÞ þ vH½nðtÞ�ð ~rÞ’ið~r; tÞ
þ vxc½nðtÞ�’ið ~r; tÞ þ vextð~r; u; tÞ’ið ~r; tÞ; (1)

nð~r; tÞ ¼ XN=2

i¼1

2’�
i ð~r; tÞ’ið~r; tÞ; (2)

for i ¼ 1; . . . ; N=2 orbitals that accomodate N electrons.
For simplicity, we will assume a spin-restricted or spin-
compensated situation, in which spin-up and spin-down
electrons are paired, occupying equal orbitals [10]. The
density is, by construction, equal to that of the real, inter-
acting system of electrons; v0 contains the internal, time-
independent fields—usually a nuclear Coulomb potential

determined by the charges Z� and positions ~R� of a set of
nuclei. To improve readability, we omit these parameters in

the notation. The term vH½nðtÞ�ð~rÞ ¼
R
d3r0 nð ~r

0;tÞ
j~r�~r0j is the

Hartree potential, and vxc½n� is the exchange and correla-
tion potential operator. We assume here an adiabatic
approximation; i.e., vxc at each time t is a functional of
the density at that time, nðtÞ. This restriction is nonessential
for the derivations that follow, but the use of nonadiabatic
functionals is very scarce, and adiabatic approximations
will result in simpler equations.

The last potential term, vext, is the external time-
dependent potential, which is determined by a ‘‘control’’
u. In a typical case, this external potential is the electric
pulse created by a laser source in the dipole approximation
and u is the real time-dependent function that determines
its temporal shape [in this case, vextð ~r; u; tÞ ¼ uðtÞ ~r � ~p,
where ~p is the polarization vector of the pulse].

If we group the N=2 single particle states into a vector
’ðtÞ, we can rewrite the time-dependent Kohn-Sham equa-

tions in a matrix form:

i _’ðtÞ ¼ Ĥ½nðtÞ; u; t�’ðtÞ; (3)

where Ĥ½nðtÞ; u; t� ¼ ĤKS½nðtÞ; u; t�I and I is the
N=2-dimensional unit matrix. With this notation, we stress
the fact that we have only one dynamical system, and not
N=2 independent ones, since all ’i are coupled. This
coupling, however, comes solely through the density, since
the Hamilton matrix is diagonal.

The specification of the value of the control u, together
with the initial conditions, determines the solution orbitals:
u ! ’½u�. Our task is now the following: we have to find

an external field—in the language of the OCT, a control
u—that induces some given behavior of the system, which
can be mathematically formulated by stating that the
induced dynamics maximizes some target functional F.
Since we are using TDDFT, this functional will be defined
in terms of the Kohn-Sham orbitals, and will possibly
depend explicitly on the control u:

F ¼ F½’; u�: (4)

In the most general case, the functional F depends on ’ at

all times during the process (we have a ‘‘time-dependent
target’’). In many cases, however, the goal is the achieve-
ment of some target at a given time T that determines the
end of the propagation interval (we then have a ‘‘static’’ or
‘‘terminal’’ target). In order to accommodate both possi-
bilities, we may split F into two parts, one terminal target
Fterm, and one time-dependent target Ftd:

F½’; u� ¼ Ftd½’; u� þ Fterm½’ðTÞ; u�: (5)

Note that the argument of Fterm is not the full evolution of
the Kohn-Sham system, but only its state at the end of the
propagation.
Since the orbitals depend on u as well, the goal of QOCT

can be formulated as finding the maximum of the function:

G½u� ¼ F½’½u�; u�: (6)

There are many optimization algorithms capable of max-
imizing the functions by utilizing solely the knowledge of
the function values (‘‘gradient-free algorithms’’). We have
recently employed one of such algorithm in this context
[11]. However, QOCT provides the solution to the problem
of computing the gradient ofG—or, properly speaking, the
functional derivative, if u is a function. The nonlinear
dependence of the Hamiltonian on the density slightly
complicates the derivation in comparison to the common
derivation for standard linear Schrödinger systems [12],
but we sketch the key steps. First, we must note that
searching for a maximum of G is equivalent to a con-
strained search for F—constrained by the fact that the ’

orbitals must fulfill the time-dependent Kohn-Sham equa-
tions. In order to do so, we introduce a new set of orbitals �

that act as Lagrange multipliers, and define a new func-
tional J by adding a Lagrangian term L to F:

J½’;�; u� ¼ F½’; u� þ L½’;�; u�; (7)

L½’;�;u�

¼�2
XN=2

j¼1

Re

�Z T

0
dth�jðtÞ

��������
d

dt
þ iĤKS½nðtÞ;u;t�

��������’jðtÞi�:

(8)

Setting the functional derivatives of J with respect to the �
orbitals to zero, we retrieve the time-dependent Kohn-
Sham equations. In an analogous manner, we obtain a set
of solution �½u� orbitals by taking functional derivatives

with respect to ’:

�J

�’� ¼ 0 )
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i _�ðtÞ ¼ ½ĤKS½n½u�ðtÞ; u; t� þ K̂½’½u�ðtÞ���ðtÞ � i
�Ftd

�’� ;

(9)

�ðTÞ ¼ �Fterm

�’�ðTÞ : (10)

The presence of the nondiagonal operator matrix

K̂½’½u�ðtÞ� is the main difference with respect to the nor-

mal QOCT equations for a linear quantum system. Its
origin is the nonlinear dependence of the Kohn-Sham
Hamiltonian with respect to the propagating orbitals.
Indeed, we can see in Eq. (8) how the Kohn-Sham orbitals
’ appear not only explicitly at the right-hand side of the

Dirac bracket expression inside the integral, but also
implicitly through the density nðtÞ that determines the

Kohn-Sham Hamiltonian ĤKS½nðtÞ; u:t�. This fact must
be considered when taking the functional derivative, and

leads to the appearance of the matrix K̂. This is given by

h~rjK̂ij½’½u�ðtÞ�jc i ¼ �4i’i½u�ð~r; tÞ Im
�Z

d3r0c �ð ~r0Þ

� fHxc½n½u�ðtÞ�ð~r; ~r0Þ’j½u�ð~r0; tÞ
�
;

(11)

where fHxc is the kernel of the Kohn-Sham Hamiltonian,
defined as

fHxc½n�ð~r; ~r0Þ ¼ 1

j~r� ~r0j þ
�vxc½n�ð~rÞ
�nð~r0Þ : (12)

If we now note that G½u� ¼ J½’½u�; �½u�; u�, we arrive at

ruG½u�
¼ ruF½’; u�j’¼’½u�

þ 2Im

2
64XN=2

j¼1

Z T

0
dth�j½u�ðtÞjruV̂ext½u�ðtÞj’j½u�ðtÞi

3
75:

(13)

Several aspects of these equations deserve further
discussion:

(1) Equations (9) and (10) are a set of first-order differ-
ential equations, whose solution must be obtained by back-
ward propagation, since the boundary condition Eq. (10) is
given at the end of the propagating interval T. Note that this
propagation depends on the Kohn-Sham orbitals ’½u�.
Therefore, the numerical procedure consists of a forward
propagation to obtain’½u�, followed by a backward propa-
gation to obtain �½u�.

(2) These backward equations are nonhomogeneous
owing to the presence of the last term in Eq. (9), the
functional derivative of F with respect to ’.

(3) Often, the control target functional F is split like

F½’; u� ¼ J1½’� þ J2½u�: (14)

Here, J1 codifies the actual purpose of the optimization,
whereas J2 imposes a penalty on the control function in
order to avoid, for example, the solution field to have
unreasonable amplitudes. In the following, we will assume
this division.
(4) Equation (13) shown above assumes that u is a set of

M parameters, u 2 RM, that determines the control func-
tion. If u is directly the control function, the gradient has
to be substituted by a functional derivative, and the result
will be

�G

�uðtÞ ¼
�F½’; u�
�uðtÞ j’¼’½u�

þ 2Im

�XN
j¼1

h�j½u�ðtÞjD̂j’j½u�ðtÞi
�
: (15)

We have assumed here that the external potential operator
v̂ext is determined by the function u by a linear relationship,

v̂ ext½u�ðtÞ ¼ uðtÞD̂: (16)

This is the most usual case [D̂would be the dipole operator,
and uðtÞ the amplitude of an electric field], but of course it
would be trivial to generalize this to other possibilities.
(5) Once one has the expression for the gradient [either

Eq. (13) or (15)], some algorithm has to be employed in
order to obtain the optimized fields. Various OCT-specific
choices have been put forward [5], specially when dealing
with continuous control parameters [as in Eq. (15)], but for
the example shown below, we have simply employed the
conjugate gradients scheme.
The previous scheme therefore permits us to control the

Kohn-Sham system. However, the goal is to control the real
system. In principle, the target is given by some functional
~J1½�� that depends on the real many-electron wave func-
tion of the interacting system. This object is not provided
by TDDFT, which only provides the density n. Therefore,
the ideal situation would be one in which ~J1 depends on�
only through the density n, ~J1 ¼ ~J1½n�. In this manner,
optimizing the Kohn-Sham system is strictly equivalent to
optimizing for the real system [13]. For example, this holds
if ~J1 is given by the expectation value of some one-body

local operator Â:

~J 1½�� ¼ h�ðTÞjÂj�ðTÞi ¼
Z

d3rnð ~r; TÞað ~rÞ; (17)

where Â ¼ P
N
i¼1 að ~̂riÞ. In this case, Eq. (10) is simply

�i½u�ð~r; TÞ ¼ 2að ~rÞ’i½u�ð~r; TÞ: (18)
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We have implemented the described TDDFTþ QOCT
formalisms in the octopus code [14]. In the following, we
describe a simple example: the charge transfer between
two neighboring potential wells, considered as models
for 2D quantum dots, such as the ones created in semi-
conductor heterostructures. We consider a two-electron
system trapped in an asymmetric double quantum dot, well
modeled by a potential function, given by (in the following,
we consider effective atomic units):

v0ðx; yÞ ¼ 1

64
x4 � 1

4
x2 þ 1

32
x3 þ 1

2
y2: (19)

The potential landscape is depicted in Fig. 1(a). We then
solve the ground-state Kohn-Sham equations for this sys-
tem using local density approximation to the exchange and
correlation [15]. The ground-state density will be localized
in the left well [see Fig. 1(b)].

We apply an electric field �ðtÞ, polarized along the x
direction. Its amplitude is parameterized by its Fourier
coefficients fujgNj¼1 that constitute the control parameters:

i.e., V̂½u�ðtÞ ¼ P
jujgjðtÞx̂, where gjðtÞ are the Fourier

basis functions (normalized sines and cosines). The
Fourier coefficients are constrained to enforce �ð0Þ ¼
�ðTÞ ¼ 0. Since our goal is to transfer as much charge as
possible from the left well to the right well, we formulate a
target in the form

F½’; u� ¼
Z
x>0

d2rnð ~r; TÞ � �
Z T

0
dt�2½u�ðtÞ: (20)

In other words, we intend to arrive at a state in which all the
density is localized in the x > 0 region. The last term of
Eq. (20) corresponds to the penalty, and it is introduced in

order to prevent the solution field from having too much
intensity. The equation for the gradient, Eq. (13), reads for
this case as follows:

@G

@uj
½u� ¼ �2�uj þ 2Im

�Z T

0
dtgiðtÞh�½u�ðtÞjx̂j’½u�ðtÞi

�
:

(21)

The solution field is shown in Fig. 1(c). We have em-
ployed a standard conjugate gradients (CG) algorithm to
perform the optimization. After around 60 CG iterations
[16,17], the control field is converged, and we achieve a
value of 1.92 for J1; the maximum is 2 (see convergence
plot in Fig. 1).
In conclusion, we have shown how TDDFT can be

combined with QOCT. The computational cost of each
optimization amounts to a few tens or hundreds of
TDDFT propagations. Therefore, the process is numeri-
cally tractable for realistic ab initio laser-molecule inter-
actions, thanks to the good scalability of real-time TDDFT
[18]. This is proven by the numerous simulations of mole-
cules and clusters in the presence of laser pulses published
during the last decade [19].
This provides a scheme to perform QOCT calculations

from first principles, in order to obtain tailored function-
specific laser pulses capable of controlling the electronic
state of atoms, molecules, or quantum dots. Most of the
previous applications of QOCT were targeted to control,
with femtosecond pulses, the motion of the nuclear wave
packet on one or a few potential energy surfaces, which
typically happens on a time scale of hundreds of femto-
seconds or picoseconds. The approach developed in this
Letter, on the other hand, is particularly suited to control
the motion of the electronic degrees of freedom, which is
governed by the subfemtosecond time scale. The possibil-
ities that are open, thanks to this technique, are numerous:
shaping of high harmonic–generation spectra (i.e., quench-
ing or increasing given harmonic orders), selective excita-
tion of electronic excited states that are otherwise difficult
to reach with conventional pulses, control of electronic
current in molecular junctions, etc. Research along these
lines is in progress.
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[11] A. Castro, E. Räsanen, A. Rubio, and E.K. U. Gross,
Europhys. Lett. 87, 53001 (2009).

[12] Details on the derivation can be found, for example, in
A. P. Peirce, M.A. Dahleh, and H. Rabitz, Phys. Rev. A
37, 4950 (1988); S. H. Tersigni, P. Gaspard, and S.A. Rice,
J. Chem. Phys. 93, 1670 (1990); I. Serban, J. Werschnik,
and E.K.U. Gross, Phys. Rev. A 71, 053810 (2005).

[13] Although TDDFT ensures that all observables are func-
tionals of the density, in practice we do not know the
explicit functional form for many of them (one notable
example would be the population of a given excited state).
These would have to be approximated, which would
introduce additional errors.

[14] M.A. L. Marques, A. Castro, G. F. Bertsch, and A. Rubio,
Comput. Phys. Commun. 151, 60 (2003); A. Castro, H.
Appel, M. Oliveira, C. A. Rozzi, X. Andrade, F. Lorenzen,
M.A. L. Marques, E. K. U. Gross, and A. Rubio, Phys.
Status Solidi B 243, 2465 (2006).

[15] C. Attacalite, S. Moroni, P. Gori-Giorgi, and G. B.
Bachelet, Phys. Rev. Lett. 88, 256601 (2002).

[16] We are brief on numerical details. The interested reader
may find the detailed description of the code used in
Ref. [14], and more updated information can be obtained
at http://www.tddft.org/programs/octopus/. The code itself
is available at that web page.

[17] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.109.153603 for the
input and output files of the run.

[18] M.A. L. Marques and E.K. U. Gross, in Time-Dependent
Density Functional Theory, edited by M.A. L. Marques,
C. A. Ullrich, F. Nogueira, A. Rubio, K. Burke, and
E.K. U. Gross (Springer Verlag, Berlin, 2006) Chap. 15,
p. 227.

[19] F. Calvayrac, P.-G. Reinhard, E. Suraud, and C. Ullrich,
Phys. Rep. 337, 493 (2000); A. Castro, M. Marques, J.
Alonso, G. Bertsch, and A. Rubio, Eur. Phys. J. D 28, 211
(2004); M. Isla and J. A. Alonso, Phys. Rev. A 72, 023201
(2005); D. Dundas, J. Chem. Phys. 136, 194303
(2012).

PRL 109, 153603 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

12 OCTOBER 2012

153603-5

http://dx.doi.org/10.1007/s00340-004-1636-x
http://dx.doi.org/10.1007/s00340-004-1636-x
http://dx.doi.org/10.1063/1.1150614
http://dx.doi.org/10.1088/0953-4075/40/18/R01
http://dx.doi.org/10.1088/0953-4075/40/18/R01
http://dx.doi.org/10.1002/9780470259474.ch2
http://dx.doi.org/10.1166/jctn.2009.1246
http://dx.doi.org/10.1166/jctn.2009.1246
http://dx.doi.org/10.1088/1367-2630/12/7/075008
http://dx.doi.org/10.1088/1367-2630/12/7/075008
http://dx.doi.org/10.1088/1367-2630/11/10/105030
http://dx.doi.org/10.1088/1367-2630/11/10/105030
http://dx.doi.org/10.1088/0034-4885/60/4/001
http://dx.doi.org/10.1088/0034-4885/60/4/001
http://dx.doi.org/10.1103/RevModPhys.72.545
http://dx.doi.org/10.1103/RevModPhys.72.545
http://dx.doi.org/10.1088/0953-4075/39/1/R01
http://dx.doi.org/10.1088/1367-2630/11/10/105038
http://dx.doi.org/10.1103/PhysRevLett.106.190501
http://dx.doi.org/10.1103/PhysRevLett.106.190501
http://dx.doi.org/10.1103/PhysRevLett.52.997
http://dx.doi.org/10.1103/PhysRevLett.52.997
http://dx.doi.org/10.1209/0295-5075/87/53001
http://dx.doi.org/10.1103/PhysRevA.37.4950
http://dx.doi.org/10.1103/PhysRevA.37.4950
http://dx.doi.org/10.1063/1.459680
http://dx.doi.org/10.1103/PhysRevA.71.053810
http://dx.doi.org/10.1016/S0010-4655(02)00686-0
http://dx.doi.org/10.1002/pssb.200642067
http://dx.doi.org/10.1002/pssb.200642067
http://dx.doi.org/10.1103/PhysRevLett.88.256601
http://www.tddft.org/programs/octopus/
http://link.aps.org/supplemental/10.1103/PhysRevLett.109.153603
http://link.aps.org/supplemental/10.1103/PhysRevLett.109.153603
http://dx.doi.org/10.1016/S0370-1573(00)00043-0
http://dx.doi.org/10.1140/epjd/e2003-00306-3
http://dx.doi.org/10.1140/epjd/e2003-00306-3
http://dx.doi.org/10.1103/PhysRevA.72.023201
http://dx.doi.org/10.1103/PhysRevA.72.023201
http://dx.doi.org/10.1063/1.4718590
http://dx.doi.org/10.1063/1.4718590

