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We present a systematic study of the proton spin structure in terms of measurable parton distributions.

For a transversely polarized proton, we derive a polarization sum rule from the leading generalized parton

distributions appearing in hard exclusive processes. For a longitudinally polarized proton, we obtain a

helicity decomposition from well-known quark and gluon helicity distributions and orbital angular-

momentum contributions. The latter are shown to be related to measurable subleading generalized parton

distributions and quantum-phase space Wigner distributions.
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Introduction.—Understanding the internal structure of
the proton, its spin structure in particular, has been a
driving motive for intense activities in hadron physics in
the past two decades. Great progress has been made on
both the experimental and theory sides. Studies of deep-
inelastic scattering and related hard processes at the elec-
tron facilities at SLAC, DESY, CERN, and Jefferson Lab,
and of polarized proton-proton collisions at the Relativistic
Heavy-Ion Collider, have generated a large body of experi-
mental data, revealing the delicate role of quarks and
gluons in the proton spin. These developments have stimu-
lated theoretical advances from a simple parton model
description of the nucleon structure to multidimension
distributions of partons, including the generalized parton
distributions (GPDs), the transverse momentum dependent
parton distributions (TMDs), and the quantum phase space
Wigner distributions. Together with the advances made in
lattice quantum chromodynamics (QCD), these develop-
ments have provided us not only deep insights for the
partonic structure of the nucleon but also great opportuni-
ties to study the strong interaction physics, such as the
QCD factorization for hard processes, and the universality
of the associated parton distributions. A recent summary
on the experimental and theoretical status can be found in
Ref. [1].

One of the key developments in understanding the spin
structure of the proton is the spin sum rule derived by one
of the authors [2], where the total contributions to the spin
from the quark and gluons can be measured through their
GPDs separately [3]. The partonic interpretation of this
spin sum rule is, however, obscure. In particular, for a
transversely polarized proton, there appear conflicting par-
tonic interpretations of the spin [4,5]. For longitudinal
polarization, one can in principle deduce the quark orbital
angular momentum (OAM) by subtracting the quark he-
licity distribution. However, it has not been possible to

identify a direct probe for the quark OAM in physical
processes. Meanwhile, the relation between the gauge-
invariant quark OAM and the canonical OAM [6,7] has
been a confusing issue in formulating a helicity sum rule
with simple physical significance.
In this Letter, we will address the above important ques-

tions by systematically seeking a partonic interpretation of
the proton spin and the experimental measurability of the
relevant distributions. We explain why a simple partonic
sum rule exists only for the transverse polarization. We find
that the gauge-invariant OAM contribution to the proton
helicity is related to twist-2 and -3 GPDs which are mea-
surable in hard exclusive processes. Finally, the canonical
OAM distribution in the light-cone gauge is related to a
Wigner distribution [8,9], which is accessible through cer-
tain hard processes. Our discussions are mainly focused on
quarks, but they can be easily extended to gluons.
Our starting point is the matrix element of the QCDAM

density M��� in the nucleon plane-wave state [6]

hPSj
Z

d4�M���ð�ÞjPSi

¼ J
2S�P�

M2
ð2�Þ4�4ð0Þ½	����P� þ 	½����P��

� ðtraceÞ� þ � � � ; (1)

where �� are the space-time coordinates, P� and S� (S �
P ¼ 0, S2 ¼ �M2) are the four-momentum and polariza-
tion of the nucleon, respectively, and J ¼ 1=2 and M are
the spin and mass, respectively. The [� . . .�] indicates
antisymmetrization of the two indices. The above equation
is fully Lorentz-covariant and can be specialized to any
frame of reference. To seek the partonic interpretation, we
consider the nucleon in the infinite momentum frame along

the z direction and take � to be the þ component [Pþ ¼
ðP0 þ P3Þ= ffiffiffi

2
p

]. Because of the antisymmetry between �
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and �, the leading component of the angular momentum
density comes from � ¼ þ and � ¼?¼ ð1; 2Þ. This is
possible only if the nucleon is transversely polarized
(S?) and the matrix element reduces to

hPSj
Z

d4�Mþþ?jPSi ¼ J

�
3ðPþÞ2S?0

M2

�
ð2�Þ4�4ð0Þ; (2)

where S?0 ¼ 	�þ?�S� with the convention of 	0123 ¼ 1.

In the above equation, a factor of 2 comes from the first
term in the bracket of Eq. (1), whereas the second term
contributes to a factor 1 because of the antisymmetric
feature of indices � and �.

The longitudinal polarization supports the matrix ele-
ment of the next-to-leading AM tensor component Mþ12:

hPSj
Z

d4 ~�Mþ12jPSi ¼ Jð2SþÞð2�Þ4�4ð0Þ; (3)

which has one Pþ factor less. Thus the nucleon helicity J is
a subleading light-cone quantity, and a partonic interpre-
tation will in general involve parton transverse momentum
and correlations.

The above result is contrary to the common intuition
about the role of spin-1=2 particle polarization in hard
scattering processes: The polarization vector S� has the
leading light-cone component Sþ ¼ Pþ when the nucleon
is longitudinally polarized, and the transverse component
S? is subleading in the infinite momentum frame.

Transverse-polarization sum rule.—According to
Eq. (2), one expects a simple partonic interpretation of
the transverse proton polarization from the leading parton
distributions. Indeed, the quark AM sum rule derived in
terms of the quark distribution qðxÞ and GPD Eðx; 0; 0Þ is
exactly of this type [2]:

Jq ¼ 1

2

X
i

Z
dxx½qiðxÞ þ Eiðx; 0; 0Þ�; (4)

where i sums over different flavors of quarks, and similarly
for the gluon AM. We emphasize that this spin sum rule is
frame-independent. In Ref. [4], Burkardt has proposed an
interesting explanation of the above result in the impact
parameter space, in which a transversely polarized nucleon
state fixed in the transverse plane generates a spatial asym-
metric parton density qðx; b?Þ, which yields to the parton’s
AM contribution to the transverse spin. Note that the above
sum rule is different from that of Leader [5], because the

transverse angular ~J? does not commute with the Lorentz
boost along the z direction.

To attribute the above sum rule with a simple parton
picture, one has to justify that ðx=2ÞðqðxÞ þ EðxÞÞ is the
transverse AM density in x; i.e., it is just the contribution to
the transverse nucleon spin from partons with longitudinal
momentum xPþ. This can be done easily. Define the quark
longitudinal momentum density �þðx; �; S?Þ through

�þðx; �; S?Þ
¼ x

Z d


4�
ei
xhPS?j �c

�
�
n

2
; �

�
�þc

�

n

2
; �

�
jPS?i;

(5)

where n is the conjugation vector associated with P: n ¼
ð0þ; n�; 0?Þ with n � P ¼ 1. A careful calculation shows
that, beside the usual momentum distribution, it has an
additional term

�þðx; �; S?Þ=Pþ ¼ xqðxÞ þ 1

2
x½qðxÞ

þ EðxÞ� lim
�?!0

S?0

M2
@?�ei�?�? ; (6)

where the �? dependence comes from the slightly off-
forward matrix element, which acts like a ‘‘distribution’’
in a mathematical sense: vanishing normally but nonzero
when integrated with some kernels. The parton contribu-
tion to the transverse polarization is just the transverse-
space moment of �þðx; �; S?Þ:

Sq?ðxÞ ¼
M2

2PþS?0ð2�Þ2�2ð0Þ
Z

d2��?�þðx; �; S?Þ

¼ x

2
½qðxÞ þ EðxÞ�; (7)

where we have included the contribution from the energy-
momentum component Tþ? through Lorentz symmetry.
Helicity sum rule.—Most of the experimental probes on

the nucleon spin use the longitudinal polarization, and thus
it is natural to explore the nucleon helicity in the parton
picture. Considering the z component of the quark AM, we
have

J3 ¼
Z

d3 ~�Mþ12ð�Þ

¼
Z

d3 ~�

�
�c�þ

�
�3

2

�
c þ �c�þ½�1ðiD2Þ � �2ðiD1Þ�c

�
;

(8)

while the quark helicity is well known to have a simple
parton density interpretation. However, the quark OAM
involves a transverse component of the gluon field and
thus is related to three-parton correlations. We notice
recent research activities aiming at different decomposi-
tions of the nucleon spin [10], which we will not address
in this Letter (see also a recent comment on these
developments [11]).
Thus a partonic picture of the orbital contribution to the

nucleon helicity necessarily involves the parton’s trans-
verse momentum. In other words, TMD parton distribu-
tions are the right objects for physical measurements and
interpretation. In recent years, TMDs and novel effects
associated with them have been explored extensively in
both theory and experiment [1]. An important theoretical
issue related to them is gauge invariance. Whenever a
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canonical momentum of color-charged particles appears,
the gauge symmetry requires that the gauge potential A�

must be present simultaneously. This is already true when
the parton’s longitudinal momentum distribution is consid-
ered: In factorization theorems for deep-inelastic scattering,
the physical parton represents a gauge-invariant object with
a gauge link extended from the location of the parton field
to infinity along the conjugating light-cone direction n�:

�LCð�Þ¼P

�
exp

�
�ig

Z 1

0
d
n �Að
nþ�Þ

��
c ð�Þ; (9)

where P indicates path ordering. Therefore, in perturbative
diagrams, a parton with momentum kþ ¼ xPþ represents
in fact the sum of all diagrams with longitudinal gluons
involved.

When considering the parton’s transverse momentum,
we also need appropriate gauge links formed of gauge
potentials. The choice for the gauge links, however, is
scattering-process dependent [12]. As a consequence, there
is no unique definition for the TMDs. In practical applica-
tions, two choices stand out. The first one uses the same
light-cone gauge link as shown in the above. This choice
does lead to light-cone singularities, which must be ad-
dressed properly in actual calculations [13]. The second
choice is a straight-line gauge link along the direction of
space-time position ��:

�FSð�Þ ¼ P

�
exp

�
�ig

Z 1

0
d
� � Að
�Þ

��
c ð�Þ: (10)

The link reduces to unity in the Fock-Schwinger gauge,
� � Að�Þ ¼ 0. The gauge-invariant parton fields �ð�Þ are
defined in the infinite momentum frame which is the basis
of partonic interpretation.

To investigate parton’s OAM contribution to the proton
helicity, one also needs their transverse coordinates. The
most natural concept is a phase-space Wigner distribution,
which was first introduced in Ref. [14]. A Wigner distri-
bution operator for quarks is defined as

Ŵ ð ~r; kÞ ¼
Z

��ð ~r� �=2Þ�þ�ð ~rþ �=2Þeik��d4�; (11)

where ~r is the quark phase-space position and k the phase-
space four-momentum, and � follows the definitions of
Eqs. (9) and (10). They represent the two different choices
for the gauge links associated with the quark distributions.
Including the gauge links in Eqs. (9) and (10) makes the
above definition gauge-invariant. However, they do depend
on the choice of the gauge link [12], as we will show below.
The Wigner distribution can be defined as the expectation

value of Ŵ in the nucleon state:

Wðkþ¼xPþ; ~b?; ~k?Þ

¼1

2

Z d2 ~q?
ð2�Þ3

Z dk�

ð2�Þ3e
�i ~q?� ~b?

�
~q?
2

��������Ŵ ð0;kÞ
���������

~q?
2

�
;

(12)

where the nucleon has definite helicity 1=2. The quark’s
OAM distribution follows from the intuition

LðxÞ ¼
Z
ð ~b? � ~k?ÞWðx; ~b?; ~k?Þd2 ~b?d2 ~k?; (13)

from partons with longitudinal momentum xPþ.
For our purpose, the most appealing choice is �FS,

because it leads to a light-cone AM density both calculable
on a lattice and measurable experimentally. To demon-
strate this, we need the Taylor expansion

��FSð��=2Þ�þ�FSð�=2Þ

¼ X1
n¼0

�c ð0Þ�þD$�1 . . .D
$�nc ð0Þ��1

. . .��n
: (14)

It follows that

Z
xn�1LFSðxÞdx

¼ 1

hPSjPSi hPSj
Z

d3 ~r
Xn�1

i¼0

1

n
�c ð~rÞðin �DÞið ~r? � i ~D?Þ

� ðin �DÞn�1�ic ð ~rÞjPSi: (15)

The right-hand side is related to the matrix elements of twist-
2 and twist-3 operators, which are extractable from experi-
mental data on twist-3 GPDs [15,16]. Because there are no
light-cone nonlocal operators involved, it can also be calcu-
lated in lattice QCD [17]. We emphasize that LFSðxÞ is not
the same as the OAM density defined through the general-
ized AM density in Ref. [18]. The difference is a twist-3
GPD contribution proportional to the gluon field Fþ?.
The total OAM sum rule in terms of parton’s Wigner

distribution is

hPSjR d3 ~r �c ð ~rÞ�þð ~r? � i ~D?Þc ð ~rÞjPSi
hPSjPSi

¼
Z
ð ~b? � ~k?ÞWFSðx; ~b?; ~k?Þdxd2 ~b?d2 ~k?; (16)

which gives a parton picture for the gauge-invariant OAM
[2], although the straight-line gauge link destroys the
straightforward parton density interpretation.
Other choices of gauge links yield different Wigner

distributions and hence different partonic OAM distribu-
tions LðxÞ. However, so long as the gauge link between
[� �=2, �=2] is smoothly differentiable, Eq. (16) remains
valid. This is one of the important virtues of the gauge-
invariant approach. However, for partons with the light-
cone gauge link �LC, the above sum rule is invalid, as we
shall see below.
Canonical orbital angular momentum.—The quark con-

tribution to the canonical orbital angular momentum was
explored in Ref. [7]:
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lqðxÞ ¼ 1

ð2�Þ22Pþ�2ð0Þ
Z d


2�
eix
d2�hPSj �c

�
�
n

2
; �

�
�þ

� ð�1i@2 � �2i@1Þc
�

n

2
; �

�
jPSi: (17)

This definition represents the canonical OAM in the
light-cone gauge Aþ ¼ 0 and is not gauge invariant. A
gauge-dependent quantity is in principle not measurable
experimentally. However, sometimes one can fortunately
find its gauge-invariant extension (GIE) physically mea-
surable. A GIE of a gauge-variant quantity is a fixed-gauge
result gauge-invariantly extrapolated to any other gauge. A
GIE of the partial derivative in Aþ ¼ 0 gauge is

i@?� ¼ iD?
� þ

Z ��
d��L½��;���gFþ?ð��; �?ÞL½��;���;

(18)

which is uniquely defined, and L½��;��� is the light-cone

gauge link connecting �� and ��. One can plug this into
Eq. (17) to obtain a GIE of lqðxÞ away from Aþ ¼ 0. The

covariant derivative term is just what we have discussed
before. The second term involves a nonlocal operator along
the light cone and has an obscure physical meaning other
than in the light-cone gauge. Its matrix element is in
principle related to the twist-3 GPDs [15], and an infinite
number of moments are involved due to nonlocality.
Therefore, we arrive at the interesting conclusion that
lqðxÞ in the light-cone gauge is actually accessible through

twist-2 and -3 GPDs, which is consistent with what Hatta
has concluded recently [9].

A clear parton picture emerges through connections
between lqðxÞ and TMDs and Wigner distributions [8,9].

One can introduce a Wigner distribution with the gauge

link in the light-cone direction,WLCðx; ~b?; ~k?Þ. Integration
over the impact parameter space

R
d2 ~b?WLC generates

quark-spin independent TMDs. It can be shown that the
canonical AM distribution in Aþ ¼ 0 gauge as defined in
Ref. [7] can be obtained from the simple moment of a
gauge-invariant Wigner distribution:

lqðxÞ ¼
Z
ð ~b? � ~k?ÞWLCðx; ~b?; ~k?Þd2 ~b?d2 ~k?: (19)

From the discussion of the previous paragraph, this also
implies constraints on the moments of Wigner distributions
from the GPDs. Finally, the canonical OAM in the light-
cone gauge acquires the simple parton sum rule in the
quantum phase space [8,9]:

lq ¼ hPSjR d3 ~r c ð ~rÞ�þð ~r? � i ~@?Þc ð ~rÞjPSi
hPSjPSi

¼
Z
ð ~b? � ~k?ÞWLCðx; ~b?; ~k?Þdxd2 ~b?d2 ~k?: (20)

The measurability of this Wigner distribution will be
studied in a future publication [16].

Conclusion.—In summary, we explored systematically
parton pictures for the proton spin and achieved a number
of important results. For the transverse polarization, we
found that it is simple to interpret in terms of parton AM
density measurable through twist-2 GPDs. For the nucleon
helicity, the gauge-invariant parton picture can be probed
through twist-2 and -3 GPDs and is also calculable in
lattice QCD. A simpler parton picture in the light-cone
gauge can be established through the quantum phase space
Wigner distribution and can be measured through either
twist-2 and -3 GPDs or directly from Wigner distribution.
These results will stimulate further theoretical develop-
ments and generate experimental interests to measure,
particularly, the parton OAM in hard scattering processes.
Phenomenological studies will be presented elsewhere.
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