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The Polyakov loop has been used repeatedly as an order parameter in the deconfinement phase

transition in QCD. We argue that, in the confined phase, its expectation value can be represented in terms

of hadronic states, similarly to the hadron resonance gas model for the pressure. Specifically, LðTÞ �
1
2

P
�g�e

���=T , where g� are the degeneracies and �� are the masses of hadrons with exactly one heavy

quark (the mass of the heavy quark itself being subtracted). We show that this approximate sum rule gives

a fair description of available lattice data with Nf ¼ 2þ 1 for temperatures in the range 150 MeV<

T < 190 MeV with conventional meson and baryon states from two different models. For temperatures

below 150 MeV different lattice results disagree. One set of data can be described if exotic hadrons are

present in the QCD spectrum while other sets do not require such states.

DOI: 10.1103/PhysRevLett.109.151601 PACS numbers: 11.10.Wx, 11.10.Jj, 11.15.�q, 12.38.Lg

Introduction.—The transition from the hadronic phase to
the quark-gluon plasma phase has been a recurrent topic in
hadronic physics [1]. In pure gluodynamics or, equiva-
lently, for infinitely heavy quarks, this is a true phase
transition. The order parameter is identified as the thermal
Wilson line or Polyakov loop [2–4],

� ¼ Pei
R

1=T

0
A0dx0 ; LðTÞ ¼ htr�i; (1)

where A0 is the gluon field, T is the temperature and P
denotes path ordering. LðTÞ changes abruptly from zero to
near Nc (the number of colors) due to the breaking of the
center symmetry ZðNcÞ for T > Tc. In QCD, i.e., for dy-
namical quarks, the center symmetry is explicitly broken by
the quarks and one has instead a smooth crossover [5] and
the critical temperature Tc is usually defined by the condi-
tion L00ðTcÞ ¼ 0. Lattice simulations show that chiral sym-
metry is restored when quarks and gluons are deconfined.
These theoretical insights strongly suggested the experi-
mental quest for the quark-gluon plasma in current facili-
ties. The Polyakov loop also serves as a gluonic effective
degree of freedom in the successful Polyakov–Nambu-
Jona–Lasinio and Polyakov–quark-meson models to
describe hot and/or dense QCD [6–10].

Since hadrons (and possibly glueballs) are the physical
states in the confined phase, it should be expected, by
quark-hadron duality, that physical quantities admit a rep-
resentation in terms of hadronic states. The QCD pressure
presents a prime example of this, through the hadronic
resonance gas model (HRGM) [11–17],

1

V
logZ ¼ �

Z d3p

ð2�Þ3
X

�

��g� logð1� ��e
�

ffiffiffiffiffiffiffiffiffiffiffiffi
p2þM2

�

p
=TÞ;

(2)

with g� the degeneracy factor, �� ¼ �1 for bosons and
fermions, respectively, and M� the hadron mass. These
resonances are the low-lying states listed in the review by
the Particle Data Group (PDG) [18]. Actually, in the large
Nc limit this expectation becomes a true theorem in QCD
since the flavor resonances become narrow �=M ¼
Oð1=NcÞ (see, e.g., Refs. [19,20]). After some controver-
sies, lattice calculations seem to suggest that this is also a
good approximation in the physical case Nc ¼ 3 [21]. This
problem has been addressed within a strong coupling
expansion for heavy quarks in Ref. [22].
Despite its prominent theoretical role, �ðxÞ does not

appear to be directly accessible in the laboratory, being
most naturally defined in the imaginary-time formalism of
field theory at finite temperature [23,24] (see Ref. [25] for
its definition within the real-time formalism). The realiza-
tion of the Polyakov loop through a static (or heavy) quark
and its relation with the heavy-quark self-energy (or even
with the binding energy between a static and a dynamical
quark [26]), is not new [4,27], but the phenomenological
consequences of this fact have not yet been extracted at a
quantitative level. Here we argue that the Polyakov loop in
the confined phase can also be represented in terms of
hadronic properties in a direct and quantitative way,
similarly to the HRGM for the pressure.
Polyakov loop and hadronic spectrum.—In the

Hamiltonian formulation of QCD [28,29] the gauge is
partially fixed by the condition A0 ¼ 0 and the dynamical
degrees of freedom are contained in the spatial gluons A
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and the quarks. The time-independent gauge transforma-
tions gðxÞ are still a residual symmetry of the Hamiltonian
acting in the Hilbert space H of functionals �ðA; q; �qÞ.
The gauge group SUðNcÞ decomposes H into invariant
subspaces labeled by an irreducible representation r at
each point x: H ¼ L

frðxÞgH frðxÞg. In the Euclidean lat-

tice formulation, the role of the integration over A0, or
equivalently integration over �ðxÞ with the Haar measure,
is to project onto the physical subspace, which requires a
color singlet at every point x.

An infinitely heavy quark (of a new flavor) sitting at x0 is
a spectator with spin and color degrees of freedom only.
For the gluons and dynamical (as opposed to heavy)
quarks, this is equivalent to living in the subspace
H rðx0Þ¼3: a color singlet at every point except x0, which

is in the fundamental representation (3 for three colors).
The projector onto this subspace is obtained by adding the
factor Nctr½�ðx0Þ� to the Haar measure [30]. For the ex-
pectation value of the Polyakov loop this immediately
implies the relation [31,32]

LbareðTÞ ¼ 1

2

Trh;x0ðe�H=TÞ
Trphysðe�H=TÞ : (3)

The factor Nc in the projector represented the trivial de-
generacy of the system formed by gluons plus dynamical
quarks in the fundamental representation at x0, and is
canceled when this is combined with the spectator quark
to form a color singlet. The factor 1=2 removes the double
counting from the two spin states of the spectator quark.
The left-hand side is independent of the heavy quark spin
(as the Polyakov loop carries no spin) and this is fully
consistent with the well-known heavy-quark spin symme-
try present in QCD [33,34]. The (infinite) mass of the
spectator quark is not included in H.

Equation (3) is exact for the bare Polyakov loop and the
partition functions inH phys andH rðx0Þ¼3 on the lattice. In

the renormalized continuum limit the relation still holds,
after removing the additional specific UV divergence in-
troduced by the heavy quark self-energy in LðTÞ and

Trh;x0ðe�H=TÞ. Such removal leaves a nonperturbative am-

biguity by an additive constant in the Polyakov loop free
energy FðTÞ ¼ �T logLðTÞ [21,27,35–38].

The (renormalized) partition functions in Eq. (3) are
saturated by states of the spectrum. Since the spectator
quark can be reached smoothly by taking the infinite mass
limit of a heavy quark at rest, this implies

LðTÞ ¼ lim
mh!1

1

2

P0
�gh�e

�ðEh��mhÞ=T
P

� g�e
�E�=T

; (4)

where mh denotes the heavy quark mass. Here, the sum in
the denominator is just the QCD partition function and so it
includes all possible states made of gluons and dynamical
quarks (labeled by �). On the other hand, the sum in the
numerator includes all possible QCD states with exactly

one heavy quark h at rest (such a statement would be
meaningless for dynamical quarks, but not for infinitely
heavy quarks), plus gluons and dynamical quarks (jointly
labeled by h�). The difference Eh� �mh explicitly
removes the heavy quark mass from the total energy of
the state.
For temperatures well below the crossover, we expect

the previous states to be of hadronic type (and possibly
glueballs). In particular, the heavy quark h will form a
hadron with the dynamical quarks, typically, a meson of
hybrid type, i.e., formed by the heavy quark and a dynami-
cal antiquark, h �q, or a hybrid baryon with the heavy quark
and two dynamical quarks, hqq.
The HRGM for the QCD partition function follows

naturally from assuming that the QCD interaction primar-
ily confines quarks into hadrons and that purely hadronic
interactions can be neglected. Under this assumption, the
numerator of Eq. (4) contains one hybrid heavy-light
hadron at rest plus exactly the same multi-hadron states
occurring in the denominator. This yields a cancellation
between numerator and denominator. Therefore, within the
same approximations leading to the HRGM, we expect the
following relation to hold between the Polyakov loop
expectation value in the confined phase and the hadronic
spectrum

LðTÞ � 1

2

X

�

00
gh�e

��h�=T; �h;� ¼ Mh� �mh: (5)

Here the sum is over all states made just of a single hybrid
hadron at rest (with exactly one heavy flavor quark, mass
Mh� and degeneracy gh�), and no additional hadrons.
Of course, neither the sum rule in Eq. (5) nor the HRGM

can be accurate when unconfined states of the spectrum
start to play a role, that is, for temperatures in the crossover
region or above. For instance, LðTÞ is a decreasing function
at high enough temperatures, in the perturbative regime
[39], while the Boltzmann distribution in the right-hand
side of Eq. (5) is always increasing as a function of T.
On the other hand, the mass of the heavy-light hadron is an
observable (a renormalization invariant) but depends on
the heavy flavor, while �h� is universal in the heavy quark
limit but has some running from mh, which is itself not an
observable. The Polyakov loop is renormalization invariant
and well defined, modulo the above mentioned shift ambi-
guity in the free energy. This can be compensated by a
corresponding shift in the heavy quark mass.
Estimates from the physical spectrum.—In order to

compare different Polyakov loop determinations with the
hadronic sum rule, they have to be brought to a common
renormalization condition. Two such determinations are

related by L0ðTÞ ¼ eC=TLðTÞ, for some constant energy
shift C. In Fig. 1 we compile five Polyakov loop data
sets, obtained with physical quark masses and three flavors
on the lattice [17,21]. The plot shows that four of them
agree after applying suitable finite renormalizations (no
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attempt has been made to optimize the agreement), in a
wide range of temperatures. Unfortunately, the agreement
deteriorates at lower temperatures, below T � 150 MeV.
This region is relevant for comparison with the hadronic
sum rule. Since there is no ‘‘true’’ value of LðTÞ, a finite
renormalization, or choice of heavy quark mass, should be
admitted too in the hadronic sum rule. Nevertheless, large
renormalizations (compared with the hadronic scale)
would be unnatural, and would probably signal an inade-
quacy of the sum rule, or of the renormalization prescrip-
tion used for the Polyakov loop. A neat way to remove any
ambiguities is to work with the derivative of T log½LðTÞ�
with respect to T. This slope is sensitive to the effective
number of states at a given temperature. Although with
some noise, Fig. 2 shows that a signal can be extracted in
this way.

A natural step is to check to what extend the hadronic
sum rule is fulfilled by experimental states compiled in the
PDG. Several sources of error should be kept in mind when
doing this, among others, that not all needed states may
have been compiled, that the heavy quarks in nature have a
finite mass, that their current mass is scale dependent, and
that the quark masses on the lattice may not be identical to
the physical ones. Hadrons with a bottom quark would be
optimal, due to the large quark mass compared to �QCD,

but the available data are scarce, so we turn to charmed
hadrons. Specifically, we consider the lowest lying single-
charmed mesons and baryons with u, d, and s as the
dynamical flavors, with quarks in relative s wave inside

the hadron. For mesons, these are usually identified with
the states (spin-isospin multiplets) �D, �Ds, �D�ð2010Þ and
�D�
s , and for baryons, with �c, �cð2455Þ, �c, �

0
c, �c,

�cð2520Þ, �cð2645Þ, and �ð2770Þ. A total of 12 meson
states and 42 baryon states.
The plot in Fig. 3 shows that the lowest-lying states

fall short to saturate the sum rule, regardless of the choice
of mass of the charmed quark, mc. This is not surprising
as any model predicts many excited states on top of the
lowest-lying ones, as is also the case for light-quark
hadrons. Adding more states from the PDG does not
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FIG. 2 (color online). Extraction of the slope d
dT fT log½LðTÞ�g

(dimensionless) as a function of T (in MeV) from the same four
lattice data sets of Fig. 1. The error bars in the slope were
obtained from assuming a linear interpolation between measured
points. The black thick line indicates the average in the range of
temperatures common to the four sets. The yellow strip indicates
the uncertainty.
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FIG. 1 (color online). T log½LðTÞ� as a function of T (units in
MeV) from simulations on the lattice with 2þ 1 physical
dynamical quark masses. Lower set of lines: data after a com-
mon shift C ¼ �150 MeV ( just for displaying purposes) for
continuum extrapolated stout (black solid line, ‘‘circle’’) [21],
HISQ/tree action Nt ¼ 12 scale set r1 (blue solid line, ‘‘square’’)
and fk (blue dashed line, ‘‘up triangle’’), and asqtad action
Nt ¼ 12 scale set r1 (red solid line, ‘‘down triangle’’) and fk
(red dashed line, ‘‘rhombus’’) [17]. Upper set of lines: same data
(except asqtad scale set r1) with shifts C ¼ 0, 0, �10 MeV and
�30 MeV, for stout, HISQ/tree scale r1, HISQ/tree scale fk, and
asqtad scale fk, respectively.
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FIG. 3 (color online). Comparison of d
dT fT log½LðTÞ�g (yellow

strip) with d
dT ðT logð12

P00
� gh�e

��h�=TÞÞ from hadronic states

(mesons plus baryons): lowest-lying hadrons from PDG (solid
brown line, label a), RQM states from Refs. [40,41] with quark c
(solid red line, label b), and with quark b (dashed red line,
label c), and bag model estimate including states up to � ¼
5500 MeV (solid blue line, label d).
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seem practical due to the fragmentary information avail-
able. Instead we turn to hadronic models. The aim is not so
much to have a detailed description of the various states but
to give a sufficiently good overall description of the whole
spectrum. To this end we consider the relativized quark
model (RQM) [40,41], and the bag model [42,43]. We have
verified that the RQM provides a good account of the trace
anomaly in Ref. [21]. The total number of hadron states
computed in Ref. [40,41] with one c quark is 117 for
mesons and 1470 for baryons, corresponding to a maxi-
mum value of � ¼ M�mc about 1500 MeV. For hadrons
with one b quark, 87 mesonic and 1740 baryonic states,
with a similar upper bound for �. In both cases we have
supplemented missing states with strange quarks by means
of the equal spacing rule [44] and a s quark mass of
109 MeV (extracted from the lowest-lying hadrons
masses). The prediction based on these hadronic states is
displayed in Fig. 3. The two sum rules are closer to the
Polyakov loop result but still tend to stay below it in the
range T < 175 MeV, a consequence of the truncation of
states to �< 1500 MeV. It is noteworthy that the bottom
sum rule gives a better value, as it would be expected due to
the larger mass of the b quark.

The other model we consider is more schematic but
allows us to easily include a larger number of states. This
is a simplified MIT bag model [42,43], in order to correctly
count the number of states without fine details such as
multiplet splittings. As bag energy we take

� ¼
P

i ni!i � Z

R
þ 4�

3
R3BþX

i

mi; (6)

where ni, !i, and mi are the occupation number, bag
frequency, and current quark mass (mu ¼ md ¼ 0, ms ¼
109 MeV). The model gives directly � after adjustment of
R, without center of mass corrections, since the heavy
quark has actually infinite mass (not included), sits at the
center and plays no active role. The sum over i runs over
just one antiquark for h �q mesons and two quarks for hqq
baryons. We set B ¼ ð166 MeVÞ4 [43], and find mb ¼
4660 MeV and Z ¼ 0:3 from a fit to the single-bottom
lowest-lying mesons and baryons masses. The result for the
bag model with �< 5500 MeV is displayed in Fig. 3. The
more complete description of the hadronic spectrum gives
a better account of the Polyakov loop data in the range
145 MeV< T < 175 MeV. We have checked the follow-
ing. (i) For this range of temperatures heavier states
become irrelevant for the sum rule. We see this by project-
ing the cumulative number of states assuming a power
law dependence for mesons and for baryons [45].
(ii) Truncation to �< 1500 MeV gives a result quite con-
sistent with that of RQM. (iii) A similar power-law pro-
jection of the spectrum for the RQM, to estimate the effect
of adding the states above � ¼ 1500 MeV, also reprodu-
ces quantitatively the bag model result. And (iv) using
single-charm lowest-lying hadrons to fix the bag model

parameters yields tiny differences in Fig. 3. The hadronic
sum rule eventually overshoots the Polyakov loop result
(see Fig. 3) as the crossover to the deconfined phase sets in.
This mimics the same behavior in the HRGM [21,46].
In Fig. 4 we display lattice data for T logLðTÞ vs the

hadronic sum rule. The hadronic estimate describes well
the various lattice data sets in the range 150 MeV< T <
190 MeV, and even lower temperature data from Ref. [17].
However, the steeper slope displayed by the stout action
data [21] for T < 150 MeV cannot possibly be saturated
with conventional mesons and hadrons, since all these
states have already been accounted for. Inclusion of exotic
hadrons, hq �q �q (tetraquarks) and hqqq �q (pentaquarks), do
actually produce the required slope (see Fig. 4), and it
would imply a much shorter temperature range of applica-
bility of the hadronic sum rule. At present, the various sets
of lattice data disagree at the lowest temperatures, and also
it is unsettled whether exotic hadrons are present in the
QCD spectrum or not [47]. Our analysis implies that
resolution of one of these issues would shed light on
the other.
Final comments.—From QCD considerations, we derive

a Boltzmann distribution formula in terms of hadrons for
the expectation value of the Polyakov loop in the confined
phase, as required by quark-hadron duality, where its real
and positive character becomes manifest. Our derivation
exposes the obvious fact that the Polyakov loop gets its
expectation value from the dressing with dynamical quarks
or antiquarks. Since UðNfÞ is an exact global symmetry,

the numerator in Eq. (3), and hence LðTÞ itself, can be
decomposed into separate contributions from different fla-
vors and different baryon numbers. Such decompositions
are in principle accessible to lattice calculations (although
with a difficulty similar to that of introducing a chemical
potential) and they would provide further information
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FIG. 4 (color online). T log½LðTÞ� (in MeV) for the four lattice
data sets of Fig. 1 compared to the hadronic sum rule from the
bag model. Solid blue line: estimate from conventional mesons
and baryons applying a shift C ¼ 55 MeV. Dashed green line:
estimate when exotic hadrons are included, with C ¼ 15 MeV.
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about the interplay between the QCD thermal state and the
heavy quark spectrum.
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