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We provide the first evidence for a holographic correspondence between a gravitational theory in flat

space and a specific unitary field theory in one dimension lower. The gravitational theory is a flat-space

limit of topologically massive gravity in three dimensions at a Chern–Simons level of k ¼ 1. The field

theory is a chiral two-dimensional conformal field theory with a central charge of c ¼ 24.
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One of the main pillars of our contemporary understand-
ing of quantum gravity is the holographic principle [1]. It
states that a quantum theory of gravity in dþ 1 dimensions
should have an equivalent description in terms of an ordi-
nary unitary quantum (field) theory without gravity in d
dimensions.

The holographic principle had no concrete realization
until Maldacena’s seminal work on the anti–de Sitter/
conformal field theory (AdS/CFT) correspondence [2],
which established that string theory in AdS incorporates
the holographic principle in a specific way. In order to
understand holography better and for obvious practical
purposes, one would like to formulate AdS/CFT-like sce-
narios in asymptotically flat spacetimes. This is the main
purpose of our Letter.

Even though progress has been achieved on various
fronts in order to extract features of the flat space S-matrix
from AdS/CFT correlators, see, e.g., Ref. [3], it is fair to
say that efforts at flat-space holography have not met with a
great deal of success. This is somewhat surprising, given
that flat spaces can be obtained as a large radius limit of
AdS [4]. One could expect that holography for flat spaces
should arise as a similar limit of the usual holographic
dictionary in AdS.

A first concrete indication of the AdS/CFT correspon-
dence is the observation by Brown and Henneaux that the
asymptotic symmetry group of three-dimensional anti–de
Sitter space (AdS3) consists in two copies of a Virasoro
algebra with nontrivial central charges [5]. This hinted at
the statement that any theory of quantum gravity with
AdS3 boundary conditions is a 2D CFT [6]. In flat space-
times, the asymptotic symmetry group is the infinite di-
mensional Bondi—Metzner—Sachs (BMS) group [7]. It is
therefore natural to expect this group to play a crucial role
in flat space holography.

In pure Einstein gravity in three dimensions, it was
observed that the asymptotic algebra picks up central ex-
tensions [8]. It turns out that the BMS3 algebra [9] is
related to the conformal algebra through a redefinition of
generators and taking the cosmological constant to zero

[8,10,11]. Also, the general asymptotically flat solution to
Einstein gravity could be obtained as a limit of the general
solution in AdS3 [12,13]. From the field theory point of
view, it was shown that the limit of a large AdS radius is
perceived as a contraction on the dual CFT [10,11]. So, if
we believe that quantum gravity on AdS is dual to a CFT,
the structure of the field theory dual for flat-space would be
given by a contraction of a CFT. Interestingly, these con-
tracted CFTs were studied earlier in the context of non-
relativistic limits of CFTs and are called Galilean
conformal algebras (GCA) [14]. This intriguing connec-
tion was dubbed the BMS/GCA correspondence [10].
So far the best understood example of this connection is

in three bulk dimensions. There, the centrally extended
BMS (or GCA) algebra is generated by Virasoro generators
Ln and supertranslations Mn (with integer n).

½Lm; Ln� ¼ ðm� nÞLnþm þ c1
12

ðn3 � nÞ�nþm;0; (1a)

½Lm;Mn� ¼ ðm� nÞMnþm þ c2
12

ðn3 � nÞ�nþm;0; (1b)

½Mm;Mn� ¼ 0: (1c)

In Ref. [11], a precise spacetime picture for the limiting
procedure was outlined which generated the flat space
symmetry algebra (1) from the AdS symmetry algebra.
Even though three-dimensional (3D) Einstein gravity is

the simplest setup to address flat-space holography, it
comes with the major problem that there is no concrete
proposal yet for a specific field theory with (1) as symmetry
algebra and central extensions c1 ¼ 0, c2 � 0, as predicted
from Einstein gravity [8]. The situation would be signifi-
cantly better if c1 � 0 and c2 ¼ 0, since then the nontrivial
part of the algebra (1) would reduce to one copy of the
Virasoro algebra and one may expect (the chiral half of) a
standard CFT as field theory dual.
In this Letter, we solve this problem. Namely, we show

that a possible way around it is to add to pure Einstein
gravity a gravitational Chern-Simons (CS) term. The the-
ory is called topologically massive gravity (TMG) [15].
The action of TMG is given by
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where G is the Newton constant, R the Ricci scalar, ‘ the
AdS radius, � is the Chern–Simons coupling, and
CSð�Þ ¼ "�����

��ð@���
�� þ 2

3 �
�
���

�
��Þ is the gravita-

tional Chern–Simons term.
The asymptotic symmetries of 3D flat space at null

infinity were studied for Einstein gravity in Ref. [8]. We
impose boundary conditions on the metric g��, which

generalize or correct the ones proposed in Ref. [8]:

guu¼huuþO

�
1

r

�
; gur¼�1þhur=rþO

�
1

r2

�
; (3a)

gu	¼hu	þO

�
1

r

�
; grr¼hrr=r

2þO

�
1

r3

�
; (3b)

gr	¼h1ð	Þþhr	=rþO

�
1

r2

�
; (3c)

g		¼ r2þ½h2ð	Þþuh3ð	Þ�rþOð1Þ: (3d)

All coefficients h�� are functions of retarded time u

and angle 	, but they do not depend on the radius r. For
huu ¼ �1 we recover asymptotically the Minkowski line
element in outgoing Eddington–Finkelstein coordinates:

ds2 ¼ �du2 � 2drduþ r2d	2: (4)

In these coordinates the future null boundary Iþ is
approached in the limit r ! 1. The six Killing vectors
of (4), ‘n, mn (with n ¼ �1, 0), form an isoð2; 1Þ algebra:

‘n ¼ iein	
�
inu@u � inðrþ uÞ@r þ

�
1þ n2

u

r

�
@	

�
; (5a)

mn ¼ iein	
�
@u � n2@r � i

n

r
@	

�
: (5b)

The asymptotic symmetry group is generated by

Ln¼ iein	
�
inu@u� inr@rþ

�
1þn2

u

r

�
@	

�
þ��� (6a)

Mn¼ iein	@uþ��� (6b)

where the dots refer to subleading terms, � � � ¼ Oð1rÞ@u þ
½uf1ð	Þ þ f2ð	Þ þOð1rÞ�@r þ ½f3ð	Þ=rþOð 1

r2
Þ�@	, gener-

ating trivial gauge transformations which are modded out
in the asymptotic symmetry group. The generators pre-
serve the boundary conditions (3) and satisfy asymptoti-
cally the BMS algebra (1) (without central terms). The
generators L�1,M�1 and the corresponding Killing vectors
‘�1, m�1 differ by a trivial gauge transformation.

The boundary conditions (3) can be verified (e.g., using
Ref. [16]) to be consistent in TMG, yielding well-defined
charges that are finite, integrable and conserved. They are
given by

QMn
¼ 1

16�G

Z
d	ein	ðhuu þ h3Þ; (7a)

QLn
¼ 1

16�G�

Z
d	ein	

�
huu þ @uhur þ 1

2
@2uhrr þ h3

�

þ 1

16�G

Z
d	ein	ðinuhuu þ inhur þ 2hu	 þ @uhr	

� ðn2 þ h3Þh1 � inh2 � in@	h1Þ: (7b)

The proof of the conservation of the charges requires us to
solve the equations of motion (EOM) asymptotically. For
finite values of � the crucial on-shell conditions that
establish charge conservation are given by @uhuu ¼ 0,
hur ¼ � 1

2 @uhrr, and u@	huu þ @	hur ¼ 2hu	 þ @uhr	.

When realized as asymptotically conserved charges, the
charge algebra picks up central extensions exactly as in (1).
In TMG we obtain

c1 ¼ 3

�G
; c2 ¼ 3

G
: (8)

This is consistent with the result of Ref. [8] for Einstein
gravity, recovered in the limit� ! 1. The point of interest
here is that the Virasoro part of the BMS algebra acquires a
nontrivial central extension, c1 � 0. This resolves one of
the problems encountered in Einstein gravity.
In order to resolve another one, namely the fact that

c2 � 0, we briefly reconsider TMG in AdS. This is also
useful in its own right, since the BMS algebra (1) can be
obtained by a contraction of the asymptotic AdS algebra,

Ln ¼ Ln � �L�n, Mn ¼ 1
‘ ðLn þ �L�nÞ [8]. Here ‘ is the

AdS-radius, which is sent to infinity in the flat-space

limit. The Ln and �Ln are the generators of two copies
of the Virasoro algebra [see (1a)], with central charges

c ¼ 3‘
2G ð1þ 1

�‘Þ, �c ¼ 3‘
2G ð1� 1

�‘Þ [17]. In the limit

‘ ! 1 the corresponding BMS central charges in the
algebra (1) then become c1 ¼ lim‘!1ðc� �cÞ ¼ 3

�G , c2 ¼
lim‘!1 1

‘ ðcþ �cÞ ¼ 3
G . This agrees precisely with the result

(8) of our canonical analysis.
The consistency check we just performed indicates how

to proceed to obtain vanishing central charge c2: We should
consider a limit of TMG where c ¼ � �c. Alternatively, one
can take the flat-space limit of TMG where additionally
Newton’s constant is scaled to infinity, G ! 1, while
keeping fixed �G:

�¼ 
! 0; G¼ 1

8k

!1 so that �G¼ 1

8k
: (9)

The quantity k is the rescaled inverse Newton constant,
whose meaning will become clear in a moment. Both
limits described above exist and both lead to conformal
Chern–Simons gravity (CSG) [18] with action

ICSG ¼ k

4�

Z
d3x

ffiffiffiffiffiffiffi�g
p

CSð�Þ: (10)

PRL 109, 151301 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

12 OCTOBER 2012

151301-2



The constant k is now recognized as the Chern–Simons
level.

It is known that CSG (10) admits flat solutions [15]. So
the flat limit of TMG (2) in the scaling limit (9) is CSG (10).
The dual of this theory, if it exists, is given by the 2D
GCA (1) with central charges [see (8)]

c1 ¼ 24k; c2 ¼ 0: (11)

Both central charges are of the desired form. This is one of
the main results of this Letter.

It is worthwhile to compare with the situation of AdS
holography in TMG. There, the only candidate for a uni-
tary theory (with Brown–Henneaux boundary conditions)
and macroscopic central charge (c > 1) is chiral gravity
[19]. Interestingly, chiral gravity also leads to a single copy
of the Virasoro algebra as asymptotic symmetry algebra,
which suggests that chiral gravity could be related to our
flat-space limit of TMG with the scaling limit (9) [or,
equivalently, of CSG (10) with our flat-space boundary
conditions (3)]. We now strengthen the analogy with chiral
gravity arguing that our resulting theory is indeed chiral.

As demonstrated above, the states of the bulk form
representations of the 2D GCA. Such representations are
labeled by the eigenvalues � and � of L0 and M0 [20,21].

L0j�; �i ¼ �j�; �i; M0j�; �i ¼ �j�; �i: (12)

One defines the notion of primary states in the usual CFT
language as the states annihilated by Ln,Mn for n > 0. The
representations are built by acting on these primary states
with raising operators L�n,M�n, which raises the � eigen-
value to �þ n. For CSG (10) the eigenvalue � vanishes in
the flat-space limit since it scales linearly with 
 [see (9)].
From general considerations [21] we know that the 2D
GCA (1) with c2 ¼ 0 has unitary subsectors for � ¼ 0
where the GCA module can be reduced to the Virasoro
module and usual unitary requirements of 2D CFTs apply
here. All this fits nicely with the suggestion that the dual of
chiral gravity is the chiral half of a CFT.

Therefore, we call CSG (10) with our boundary condi-
tions (3) ‘‘flat-space chiral gravity’’ and conjecture that it is
dual to a chiral half of a CFTwith central charge c ¼ 24k.
We discuss now several important consequences and addi-
tional checks of our conjecture.

We mentioned that for c2 ¼ � ¼ 0 the representations
of the 2D GCA reduce to those of the Virasoro algebra. By
analyzing null vectors following [21] we substantiate now
this claim. Like in usual 2D CFTs, null states in the GCA
representations are states which are orthogonal to all
states including themselves. At level one the most general
state is given by ðaL�1 þ bM�1Þj�;�i. Acting with L1 or
M1 and requiring the results to vanish gives the conditions
� ¼ a ¼ 0 (or the trivial a ¼ b ¼ 0). The level one null
state is then given by

j�1i ¼ M�1j�; 0i: (13)

At level two the most general state is ða1L�2 þ a2L
2
�1 þ

b1L�1M�1 þ d1M
2�1 þ d2M�2Þj�;�i. Again we find the

conditions for the existence of null states by acting with
lowering operators. We restrict our attention to the case
c2 ¼ � ¼ 0. Then the constraints for the existence of null
vectors simplify to a1 ¼ a2 ¼ 0 and b1 ¼ � 3

2ð�þ1Þ d2. This
leads to two level-two null vectors, j�1

2i ¼ M2�1j�; 0i andj�2
2i ¼ ½L�1M�1 � 2

3 ð�þ 1ÞM�2�j�; 0i. There are no con-
straints on the central charge c1 or the weight �. If we
consistently set the level one null state (13) and its de-
scendants to zero, at level two we are left with just

j�2i ¼ M�2j�; 0i: (14)

This analysis can be continued, and at any level n we
find that we have a new null state j�ni ¼ M�nj�; 0i if we
set all the other lower level null states and their descend-
ants to zero. Thus, if all the null states are truncated in a
consistent manner, the tower of states precisely reduces to
the Virasoro tower given by the Virasoro descendants of
the primary state. There is generically no condition on c1
and �; hence we can consider the truncation of the Hilbert
space to just the Virasoro module. Here by the usual
analysis of null vectors of the Virasoro algebra, one can
put unitarity constraints on the values of central charge c1
and weight �. In conclusion, we can have unitary repre-
sentations of the GCA with c2 ¼ � ¼ 0. We call this the
chiral truncation of the GCA.
We study next aspects of the linearized spectrum by

considering solutions c �� to the linearized CSG EOM

around the flat background (4). A class of such solutions
parametrized by the L0-eigenvalue � is given by

c ��ð�Þ ¼ e�ið�þ2Þ	r���2ðm1 �m1Þ��: (15)

The modes (15) are primaries, in the sense that ‘1c ¼0¼
m1c , traceless, since ðm1Þ2¼0, and transverse,r�c

��¼0.

They obey the differential equation Dc 
� :¼




��r�c �� ¼ 0 and are a flat-space analogue of the

AdS modes constructed in Ref. [19]. In transverse gauge,
the linearized CSG EOM reduce to ðDc Þ3 ¼ 0. There are
two additional branches of solutions [22]. One is the flat-

space analogue of log excitations [23], c log

�ð�Þ¼

�iðuþrÞc 
�ð�Þ. The other one couldbe called log-squared,
c log2


� ð�Þ ¼ � 1
2 ðuþ rÞ2c ð�Þ. The angular momentum op-

erator L0 expectedly is diagonal. The operator M0 has a
rank-3 Jordan cell:

M0

c log2

c log

c

0
BB@

1
CCA ¼

0 1 0

0 0 1

0 0 0

0
BB@

1
CCA

c log2

c log

c

0
BB@

1
CCA: (16)

The result (16) differs from AdS-TMG [23] and flat-space
Einstein gravity, which have rank-2 Jordan cells.
An even more crucial difference to the AdS case is the

fact that all modes (15) (and their log and log-squared
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partners, as well as their ‘�1 and m�1 descendants) are
either divergent at r ¼ 0 or incompatible with our bound-
ary conditions (3). Moreover, the modes compatible with
our boundary conditions all have vanishing charges.
However, we can construct directly linearized modes by
acting with the Virasoro generators L�n on the vacuum (4),

denoted by c ðnÞ ¼ L�nj0i on the CFT side. We obtain on
the gravity side the nonvanishing components

c ðnÞ
uu ¼ �2ne�in	; c ðnÞ

u	 ¼ � inu

2
c ðnÞ

uu ;

c ðnÞ
		 ¼ �n2ruc ðnÞ

uu : (17)

Note that the modes (17) are neither traceless nor trans-
verse, but solve the linearized CSG EOM, are compatible
with our boundary conditions, and regular in the interior.

The conserved Virasoro charges are given by QLn
½c ðnÞ� ¼

2kðn3 � nÞ; in particular, QLn
½c ð0;�1Þ� ¼ 0 as expected

from the CFT side. Thus, the spectrum of the modes (17)
consistently matches the spectrum of Virasoro descendants
of the vacuum on the CFT side.

In addition to the linearized spectrum it is of interest to
look for nonperturbative states, basically the flat-space
limit of Bañados-Teitelboim-Zanelli (BTZ) black holes
[24–26]. They are important contributions to the quantum
gravity partition function and required for modular invari-
ance [27]. We find indeed such solutions compatible with
(3), parametrized by the locus of the Killing horizon r0 and
a parameter 
:

ds2¼
2

�
1�r20

r2

�
du2�2dudrþr2

�
d	�
r0

r2
du

�
2
: (18)

We calculate now the conserved charges associated with
these ‘‘flat BTZ’’ solutions (18). In the limit (9), the
charges of the asymptotic symmetry algebra (7) simplify
and the previous on-shell conditions are replaced by
@uhuu þ @2uhur þ 1

2 @
3
uhrr ¼ 0. This is sufficient to prove

conservation of the charges QLn
, which read explicitly

QLn
¼ k

2�

Z
d	ein	

�
huu þ @uhur þ 1

2
@2uhrr þ h3

�
: (19)

The charges QMn
vanish due to the scaling limit (9). From

(19) we read off that the vacuum (4) has the conserved
Virasoro charge QL0

ðvacuumÞ ¼ �k while the nonpertur-

bative states (18) have QL0
ðflat BTZÞ ¼ k
2.

Thus, we have just proven that there is a gap in the
spectrum between the vacuum and the nonperturbative
states. The size of the gap is given by k ¼ c

24 . The presence

of this gap is a nontrivial check of our conjecture, and an
indication [28] that the dual CFT might be an extremal
CFT. In particular, for k ¼ 1 Witten has identified a spe-
cific extremal CFT with c ¼ 24 [28], namely the monster
theory of Frenkel, Lepowsky, and Meurman [29]. This
allows us to sharpen our conjecture, namely that flat-space
chiral gravity at Chern–Simons level k ¼ 1 is dual to the

monster CFT. If this is true and also the chiral gravity
conjecture [19] holds, then chiral gravity and flat-space
chiral gravity must be dual to each other. Alternatively,
either of the purported gravity duals of the monster CFT
could be unstable and decay or flow to the stable solution.
The RG analysis in Ref. [30] is an indication that our limit
(9) is stable under RG flow, while the chiral gravity tuning
�‘ ¼ 1 is not.
It is of interest to perform further checks of our conjecture.

We mention some promising avenues. Thermodynamics
should be studied and consistency with the Cardy formula
should be checked. The quantum gravity partition function
should be calculated and compared with CFT expectations.
Two- and three-point correlators can be calculated on the
gravity side to check consistency with conformalWard iden-
tities. Finally, it would be good to clarify whether other flat-
space limits are possible, for instance, limits that do not
localize asymptotically on the future null boundary, but
that include also other components of the asymptotic bound-
ary, or similar limits in other theories of gravity.We intend to
address some of these aspects in the future [31].
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