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We introduce a new approach to evaluate transition rates for rare events in complex many-particle

systems. Building on a path-integral representation of transition probabilities for Markov processes, the

rate is first expressed in terms of a free energy in the transition-path ensemble. We then define an auxiliary

process where a suitably defined reaction variable is dynamically decoupled from all the others, whose

dynamics is left unchanged. For this system the transition rates coincide with those of a unidimensional

process whose only coordinate is the reaction variable. The free-energy difference between the auxiliary

and the physical transition-path ensembles is finally evaluated using standard techniques. The efficiency

of this method is deemed to be optimal because the physical and auxiliary dynamics differ by one degree

of freedom only at any system size. Our method is demonstrated numerically on a simple model of

Lennard-Jones particles ruled by the overdamped Langevin equation.
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The calculation of rate constants for events that are rare
on the molecular time scale, and more generally of tran-
sition probabilities for complex stochastic processes, has
been an issue of paramount interest in the natural sciences
ever since Kramers’ work appeared in 1940 [1–3]. The
main difficulty here stems from the fact that the relevant
information, while determined by the details of the micro-
scopic dynamics, can only be extracted from the statistical
properties of trajectories in the (extremely) long-time limit.
A particularly promising approach is transition path sam-
pling [4] in which, building on the Markovian character of
many relevant processes, the transition probabilities are
expressed as path integrals of the exponential of a suitably
defined functional, e.g., the Onsager-Machlup action,
S½Xð�Þ�, [5] over the set of reactive trajectories, Xð�Þ (the
transition-path ensemble, TPE) connecting microscopic
configurations representative of the reactant and product
macroscopic states, A and B, of the reaction of interest

PðB;tjA;0Þ
¼Z�1

A �
Z
�AðXð0ÞÞe��VðXð0ÞÞe�S½Xð�Þ��BðXðtÞÞD½Xð�Þ�;

(1)

where�A=BðXÞ is a characteristic function that is equal to one
ifX2A=B and zero otherwise and ZA¼

R
�AðXÞe��VðXÞdX.

The path integral in Eq. (1) has the form of the exponential
of the free energy of a generalized system whose con-
figurations are reactive trajectories [4,6,7]. Free energies
are notoriously difficult to evaluate numerically. In
practice, the transition probability is first calculated for
an auxiliary system, where this can be easily done. The
ratio of the transition probabilities in the auxiliary and
physical systems is then expressed as the exponential of
the free-energy difference between the two TPEs:

PðB; tjAÞ= �PðB; tjAÞ ¼ e�ðF� �F Þ. Such a difference can be

evaluated via thermodynamic integration [8], or any
equivalent technique. The freedom in the choice of the
auxiliary system is pretty wide, the major differences
between the various methods lying mainly in this choice.
The auxiliary system can, for instance, differ from the
physical one for a somehow different definition of initial
and/or final states [4,9,10] or for the values of some physi-
cal parameters, such as temperature or pressure [11,12].
Some of these methods are affected by the usual difficulties
that beset the numerical estimate of free energies: if the
auxiliary and physical systems differ too much, the revers-
ible transformation of one system into the other may
require too slow a process to be efficiently simulated. This
may become a major problem as the system size grows
large, because the difference between the auxiliary and the
real systems usually increases with the number of degrees
of freedom.
In order to address this issue, we define an auxiliary

system that differs from the physical one not by any
physical property, nor by the definition of the reactant or
product states, but by the dynamical process ruling its time
evolution. The latter is designed so as to coincide with that
of the physical process for all coordinates but one, which is
a suitably defined reaction variable (RV) whose main
property is the ability to discriminate reactant and product
states. Furthermore, the evolution of this RV in the auxil-
iary process is dynamically decoupled from all the other
degrees of freedom. In this way the reaction rate of the
auxiliary system can be easily determined, as it coincides
with that of a unidimensional system whose only coordi-
nate is the RV. The efficiency of the free-energy difference
evaluation should remain insensitive on system size, as
the auxiliary and physical systems differ only along one
degree of freedom at any size. As we will see, the choice of
the RV is to a large extent arbitrary, as long as its serves to
discriminate reactant and product states: a RV that hardly
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resembles the committor, which is considered to be the
ideal reaction coordinate [7,13], may be just as good.

In the following we specialize the derivation to the case
where the microscopic dynamics of the system is described
by an overdamped Langevin process

dxi ¼ dtfiðXÞ þ
ffiffiffiffiffiffiffi
2D

p
dWi; (2)

where dWi is a multivariate Wiener process of covar-
iance hdWidWji ¼ dt�ij, D is a diffusion coefficient

related to the friction � through the relation ��1 ¼ �D,
fi ¼ ���1@iVðXÞ, and VðXÞ a potential function. For this
system, we define a RV, SðXÞ, which we assume to take
different values for the reactants (state A) and products
(state B). In order to compute the conditional probability
PðB; tjAÞ that the system undergoes a transition from A to
B in a time t, we introduce an auxiliary stochastic process
in configuration space that is as similar as possible to the
original dynamics (2), but such that the RV is decoupled
from the other variables, namely, its dynamics is described
by a one-dimensional process, for which transition rates
can be easily calculated. We assume the auxiliary process
to have the form

dxi ¼ dt �fiðXÞ þ ð2 �DÞ1=2ij ðXÞdWj; (3)

where summation over repeated indices is implied
throughout, the Itō convention for stochastic differential
equations is assumed [14], and �fiðXÞ and �DijðXÞ are a

vector and a matrix field, respectively. The latter are
determined by the following conditions:

Dynamical decoupling.—The motion perpendicular to
the hypersurface in configuration space determined by the
equation SðXÞ ¼ s is decoupled from the dynamics on the
surface. For this to be the case, it is sufficient that the first
and second moments of the variation of S in the stochastic
process (3) only depend on the value of s, and not on the
specific point on the hypersurface:

hdSiX ¼ ’ðSðXÞÞdt; (4)

hdS2iX ¼ 2�ðSðXÞÞdt; (5)

where ’ðsÞ and �ðsÞ are as of yet unspecified functions of
the RV. Using Itō calculus, these conditions imply

�f iðXÞ@iSðXÞ þ �DijðXÞ@2ijSðXÞ ¼ ’ðSðXÞÞ; (6)

�D ijðXÞ@iSðXÞ@jSðXÞ ¼ �ðSðXÞÞ: (7)

Minimal variance.—The dynamical properties of the
two processes, Eqs. (3) and (2), are as close as pos-
sible. This is enforced by requiring that the two residui,
R1 ¼

P
ijð �Dij �D�ijÞ2 and R2 ¼

P
ið �fiðXÞ � fiðXÞÞ2 are

as small as possible. These conditions can be satisfied by
first minimizing R1 under the constraint (7), then R2 under
the constraints (6). This gives

�D ijðXÞ ¼ DPk
ijðXÞ þ ~DðXÞP?

ij ðXÞ; (8)

�f iðXÞ ¼ Pk
ijðXÞfjðXÞ þ niðXÞf?ðXÞ; (9)

where niðXÞ ¼ @iSðXÞ=k@SðXÞk is the versor normal to
the SðXÞ ¼ s hypersurface at point X, P?

ij ðXÞ is the projec-
tor along the n direction, Pk

ijðXÞ ¼ �ij � P?
ij ðXÞ, and

f?ðXÞ ¼ ½’ðSðXÞÞ� �DklðXÞ@2klSðXÞ�=k@SðXÞk is the ef-

fective force acting perpendicularly to the iso-S hypersur-
face. Finally, ~DðXÞ ¼ �ðSðXÞÞ=k@SðXÞk2. It can be easily
checked that the transition probabilities for any displace-
ment dX orthogonal to @S are identical for the two
processes, (2) and (3): thus, the two processes differ only
by one degree of freedom, namely, the RV. Due to the
conditions (6) and (7), in the stochastic process (3) the
evolution of the RV is dynamically decoupled from that on
the hypersurface SðXÞ ¼ s and is ruled by the stochastic

differential equation: ds ¼ ’ðsÞdtþ ffiffiffiffiffiffiffiffiffiffiffiffi
2�ðsÞp

dW. Thanks
to this property, the probability �PðB; tjAÞ to observe a
transition between A and B in a time t for the auxiliary
process (3) can be easily computed, either by direct simu-
lation or by solving numerically the corresponding Fokker-
Planck equation.
The free energy difference between the physical and

auxiliary TPEs, F � �F , can be calculated by introducing
a family of stochastic processes, labeled by a real number
0 � � � 1, which interpolate between the auxiliary and
the physical ones, Eqs. (2) and (3)

dxi ¼ dtf�i ðXÞ þ ð2D�Þ1=2ij ðXÞdWj; (10)

where

f�i ðXÞ ¼ ð1� �Þ �fiðXÞ þ �fiðXÞ; (11)

D�
ijðXÞ ¼ ð1� �Þ �DijðXÞ þ �D�ij: (12)

The corresponding TPE has probability density

P�½Xð�Þ� ¼ Z�1
A e��VðXð0ÞÞ�AðXð0ÞÞ

e�S�
eff
½Xð�Þ��BðXðtÞÞ

(13)

In the above equation, S�
eff½Xð�Þ� is an effective action

incorporating the effect of the position-dependent diffusion
matrix, Eq. (12), on the measure of the integral in Eq. (1)
(see Supplemental Material [15]). Such a TPE can be
generated either by transition path sampling [6] or by a
stochastic process in path space that directly samples this
distribution. Note also that, in Eq. (13), the statistical
weight of the initial configuration is the canonical distri-
bution of the physical system for every �. Using Eq. (13),
the free energy difference reads [8]

F � �F ¼
Z 1

0
h�@�S�

eff½Xð�Þ�i�d�; (14)
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where hi� indicates an equilibrium average in the space of
reactive trajectories, performed with respect to the proba-
bility density (13).

In order to demonstrate our approach, we calculate
the transition probability between two stable configura-
tions of a system of 5 Lennard-Jones (LJ) particles. The
typical configuration of the system is a double tetrahedron
with three particles forming the common base, and the
remaining two symmetrically placed above and under it
(see Fig. 1). This system is so simple that, at an appropriate
temperature, it is possible to compute transition probabil-
ities directly and thus benchmark our method. However,
we will show that our approach allows one to compute the
transition probability in conditions where direct simulation
would be hopeless. The configurations of the system are
identified in the present case by the Cartesian coordinates
of the 5 atoms: X ¼ fri;�; i ¼ 1; . . . 5;� ¼ 1; 2; 3g. The

stochastic process (2) reads dri;� ¼ �dt�@i;�VðXÞ þffiffiffi
2

p
dWi;�, where VðXÞ ¼ 1

2

P
i�jvLJðjri � rjjÞ is a sum of

pairwise Lennard-Jones potentials, vLJðrÞ and units are
chosen so as to make D ¼ 1.

We consider the transition from a state where two par-
ticles lie in the base of the two tetrahedra to one where they
are placed at the two opposite vertices (see Fig. 1). The
distance between these two particles can therefore be
conveniently taken as the RV: SðXÞ ¼ jr2 � r1j. In order
to highlight our central idea, while keeping the presenta-
tion as simple as possible, we constrain the first particle to
stay at the origin (r1 ¼ 0) and the second to move along the
x axis only (r2;2 ¼ r2;3 ¼ 0). Hence, we simply have

SðXÞ ¼ r2;1. Explicit expression of �f and �D for the general

unconstrained case are reported in the Supplemental
Material [15]. r2;1 is a really poor reaction coordinate

(see the committor distribution in Fig. 2). The motion of
the RV in the auxiliary dynamics is chosen to be free
Brownian, ’ðsÞ ¼ 0, and we take �ðsÞ ¼ 1. With these
choices, Eq. (10) becomes

dri;� ¼ �dt�@i;�VðXÞ þ
ffiffiffi
2

p
dWi;�; for i > 2

dr2;1 ¼ �dt��@2;1VðXÞ þ
ffiffiffi
2

p
dW2;1:

(15)

As anticipated, the auxiliary process coincides with the
original one for all the degrees of freedom, but the RV, r2;1.
In fact, for � ¼ 0 the dynamics along r2;1 is a one-

dimensional Brownian motion, uncorrelated with the other
degrees of freedom. It should also be noted that for � � 1

the canonical distribution e��VðXÞ is not a stationary dis-
tribution for the process (15), as the uncorrelated motion of
the system along r2;1 prevents its equilibration, nor does the
auxiliary dynamics satisfy detailed balance.
For the system in Fig. 1 we aim at estimating the

transition probability from state A to state B in 103 time
steps (dt ¼ 0:00096 in units where the position of the LJ
minimum is �LJ ¼ 3:16) at a temperature kBT1 ¼ �LJ=10,
kB being the Boltzmann constant and �LJ the depth of the
LJ well. Direct inspection of the dynamics of the system
shows that a typical transition takes place in no more than a
couple of hundred time steps so that sampling trajectories
of 103 time steps is enough to capture the transition
mechanism. The transition rate can then be obtained from
the slope of the transition probability as a function of time
[4]. The transition probability, P, is first evaluated directly,
by letting the system evolve by Eq. (2) for 8� 108 steps.
This gives P ¼ 2:66� 10�5. We then apply the algorithm
described in this work. The transition probability �P of the
auxiliary process is estimated by drawing a canonical
ensemble of configurations belonging to the reactant state,
A. Each of these configurations is then let to evolve for 103

time steps by the auxiliary dynamics. �P is estimated as the
fraction of these trajectories whose end point belongs to the
product state, B. This gives �P ¼ 3:98� 10�3. Estimating
the free energy difference in Eq. (14) requires performing
an integral in a (m� nþ 1)-dimensional space, m and n

FIG. 1 (color online). Reactant (a) and Product (b) states of our
system. The RV is the distance between the two blue particles.

FIG. 2 (color online). Committor distribution for trajectories
departing from the top of the barrier of the free energy profile
(shown in the inset) of the chosen RV, SðXÞ ¼ r2;1. A number of

104 different initial configurations have been sampled. From
each of these, 102 trajectories have been run until they commit-
ted either to the product or the reactant basin. The x axis reports
the fraction of trajectories committed to the product basin, while
the y axis reports the number of initial configurations with a
certain degree of commitment [13].
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being the number of degrees of freedom of the system and
the number of time steps of reactive trajectories, and � the
(m� nþ 1)th coordinate. In practice, this integral is
performed by Monte Carlo (MC) sampling in trajectory
space. The trial moves are generated via an overdamped
Langevin process whose drift is derived from the action
S�½Xð�Þ�. This approach is not based on any particular
property of the dynamics (e.g., detailed balance, like in
Ref. [16]), but the evaluation of the first derivatives of the
action requires the second derivatives of the potential, VðXÞ.
In order to efficiently estimate F � �F we bias the MC
sampling with a metadynamics history-dependent potential,
as in Ref. [17] (See Supplemental Material for details

[15]). This procedure gives F � �F ¼ �5:04� 0:27, and
P ¼ 2:58ð�0:70Þ � 10�5, consistently with the direct
evaluation (see Fig. 3).

Clearly, the same approach can be applied also in those
cases where the reaction barrier is so high as to hinder any
transition in any reasonable time. This would be the case,
for instance, by lowering the temperature to T2 ¼ T1=2,
thus making a direct estimate of the transition probability
impossible. Nevertheless, we can easily estimate the rate for
the auxiliary process and evaluate the ratio in the prescribed
manner, obtaining a value of 1:01ð�0:30Þ � 10�7 for the
transition probability.

Another major advantage of our approach is the insen-
sitivity of its efficiency on system size: whether applied to
an isolated molecule or to an extended system, the dynami-
cal decoupling only affects one degree of freedom, the RV.

Thus, the similarity between the two TPEs is significant
even in the condensed phase, making the free-energy dif-
ference calculation affordable also in this case. In order to
demonstrate this point, we have considered a system where
the five particles are surrounded by 95 other particles
interacting with each other and with the five original ones
via a LJ potential rescaled by a proper factor, in such a way
that the 95 ‘‘solvent’’ particles are approximately at the
triple point, thus displaying a slow relaxation dynamics
and further challenging the efficiency of our method.
Fig. 3(b) shows that the number of MC steps necessary
to estimate the rate does not depend sensitively on the
presence of the solvent.
We have introduced a dynamical decoupling scheme

that allows one to evaluate absolute transition rates for
processes that are (extremely) slow on the molecular
time scale, while maintaining the full accuracy of an atom-
istic description of the process. The scheme does not
assume the existence of a dominant transition pathway and
its efficiency is deemed to be roughly independent of the
system size. This opens the way to the simulation of
complex processes in condensed phase, where entropic
effects may play a dominant role. The presentation is
specialized to processes ruled by the overdamped Langevin
dynamics, but our approach appears naturally applicable to
any Markov processes characterized by a regular propa-
gator, such as Langevin dynamics with inertia, while ex-
tension to processes with a singular propagator, such as
Newtonian dynamics, appears to be less straightforward.
The freedom in the choice of the reaction variable being
decoupled and of its dynamics leaves ample space for
optimizing the efficiency of the method, while the formal
analogies existing between the overdamped Langevin dy-
namics and Euclidean quantummechanics make us believe
that a similar approach can be used to evaluate tunneling
splitting in quantum systems.
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