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We experimentally demonstrate polarization entanglement for squeezed vacuum pulses containing

more than 105 photons. We also study photon-number entanglement by calculating the Schmidt number

and measuring its operational counterpart. Theoretically, our pulses are the more entangled the brighter

they are. This promises important applications in quantum technologies, especially photonic quantum

gates and quantum memories.
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Entanglement is the signature of the quantum world.
One part of an entangled system has its properties fully
undefined yet fully correlated with the properties of its
counterpart [1]. Can this behavior be observed for large
objects? Recently, entanglement was discovered for mac-
roscopic material systems [2,3]. It is tempting to observe it
for bright photonic states [4,5], because bright light is
much more efficient in interactions than single photons.
For bright squeezed vacuum (SV), very different from
usual squeezed light, entanglement was discussed theoreti-
cally [6–10] but never tested experimentally. Coincidence
measurements could only reveal entanglement for up to 12
photons [11].

The clue to the observation of entanglement for bright
SV is in registering, instead of single photons and coinci-
dences [9,11,12], fluctuations of macroscopic intensities
and measuring the variances of intensity differences [13].
A great advantage of this measurement is that it is robust
against the multimode detection. In our experiment, by
applying this technique to entangled bright SV, the states
of entangled SV, also known as macroscopic Bell states,
can be obtained via parametric down-conversion in two
type-I nonlinear crystals [13]. For example, the singlet
state is generated by the Hamiltonian [8,10,11,13]

Ĥ ¼ i@GðayHbyV � ayVb
y
HÞ þ H:c:; (1)

where ay and by are photon creation operators in beams A
and B, respectively, which in our case have the same
direction but different wavelengths �A and �B. The sub-
scripts H and V stand for the horizontal and vertical
polarization, respectively, and the parameter G depends
on the crystal properties and the pump power. The state
can be written as a Fock-state expansion [10]:

j�ð�Þ
maci ¼ 1

cosh2�

X1

N¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
N þ 1

p
tanhN�j�ðNÞ� i; (2)

where j�ðNÞ� i � ð1= ffiffiffiffiffiffiffiffiffiffiffiffiffi
N þ 1

p Þ 1
N! ðayHbyV � ayVb

y
HÞNj0i and �

is the parametric gain.

Clearly, photon numbers in beams A and B are exactly
the same. Moreover, if polarization beam splitters are
placed in the beams, the number of transmitted photons
in beam A will be equal to the number of reflected photons
in beam B, and vice versa (Fig. 1). Correlations will be
maintained at any orientations of the polarizers, or quarter-
wave plates in front of them, as long as they are the same
for both beams. This is because the operator expression in

j�ðNÞ� i is invariant to polarization transformations. Note
that such perfect correlations are manifested only by SV
and not by displaced squeezed states, which contain a huge
coherent component and only a small part of SV.
Such polarization correlations are similar to the ones

manifested by two-photon Bell states but involve far larger
photon numbers. Besides their fundamental interest, they
are important for quantum information protocols based on
light-light (quantum gates) and light-matter (quantum
memory) interactions. One can mention quantum memory
proposal [14] and up-conversion of such states [15]. The
latter suggests a new field of research, nonlinear optics of
entangled states.
Separability condition.—How can we prove in experi-

ment that the state (2) is entangled? According to Ref. [10],
if a bipartite system containing two macroscopic light
beams A and B (Fig. 1) is separable, it satisfies a certain

FIG. 1 (color online). Quantum correlations of the macro-
scopic singlet Bell state. The source S emits light pulses into
beams A and B (spatially separated for clarity). In each pulse,
photon numbers emitted into any orthogonal polarization modes
in the two beams are random but exactly equal.
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condition. Violation of this condition indicates that the
state is nonseparable (entangled if it is pure).

To simplify comparison with experiment, we derive a
necessary condition of separability in terms of the Stokes
parameters and their variances [16]. This approach enables
us to prove a stronger condition than the one of Ref. [10]. It
is important that our consideration is also valid for multi-
mode beams.

As shown in Sec. A of the Supplemental Material [16],
for a separable state, the sum of the three Stokes variances
�S2i , i ¼ 1; 2; 3, cannot be smaller than twice the total

photon number hŜ0i:
X3

i¼1

�S2i =hŜ0i � 2: (3)

A similar inequality was proved for atomic ensembles [17].
Inequality (3) is often mentioned as one of the uncer-

tainty relations in polarization quantum optics (see, for
instance, [18,19]). Indeed, it follows directly from the

well-known equality for the Stokes operators Ŝi [18],

Ŝ21 þ Ŝ22 þ Ŝ23 ¼ Ŝ0ðŜ0 þ 2Þ. It should be noted, however,
that this operator equality holds true only in the case where,
apart from the two polarization modes, the light beam
contains only a single frequency and angular mode
[20,21]. Thus, inequality (3) is not of general validity. In
fact, it is a necessary condition of separability. Its violation
indicates that a beam is nonseparable, i.e., is a sufficient
condition of nonseparability. As we show below, Eq. (3) is
violated in our experiment.

The experiment was performed with the macroscopic

singlet Bell state j�ð�Þ
maci, similar to the one considered in

[8–11]. The setup (Fig. 2) is described in detail in
Refs. [13,16].

Theoretically, the singlet state j�ð�Þ
maci has three Stokes

parameters equal to zero, hŜ1;2;3i ¼ 0, as well as the cor-

responding variances, �S21;2;3 ¼ 0, and higher-order mo-

ments [20]. Thus, in theory condition (3) is always
violated, as its left-hand side is zero. In practice, achieving
a zero variance of any Stokes observable is impossible.
The noise is caused by the inevitable losses (including the
nonideal quantum efficiency of the detectors) and the
imperfect mode matching. To optimize the mode matching,
beams A and B are filtered in the angle separately.

Testing condition (3) requires the measurement of var-
iances for three Stokes observables and the total photon

number hŜ0i, which is the shot-noise level. The variances

of S1;2;3 and the mean photon number hŜ0i were measured

by analyzing the statistics over 20 000 pulses [22]. Typical
photon numbers per pulse were 105, due to a very large
number of modes collected. It is known that collinear
type-I phase matching is characterized by a large number
of angular Schmidt modes [23]. By accepting, with our
angular apertures, nearly whole angular spectra at wave-
lengths �A and �B, we collected about 104 angular modes

and 102 frequency modes [24]. At the same time, the
number of photons per mode was mesoscopic. The
bottom-left part of Fig. 2 shows the output versus input
characteristic of the down-converter. It is almost linear, and
the fit yields the maximum gain 0:33� 0:06 corresponding
to the number of photons per mode 0:12� 0:04. However,
condition (3) is invariant to the number of modes [16]. This
is why it is suitable for testing multimode states; on the
contrary, traditional Wigner-function measurement re-
quires single-mode states and is therefore not applicable
here. Besides, measurement of the photon-number vari-
ance for SV has been shown to be invariant to the gain, at
least up to values �� 2 [24].
Figure 3 shows the left-hand side of inequality (3)

plotted against the diameter of the A1 aperture, D1. As
expected, the best noise suppression is observed for D1

satisfying the mode matching condition D1=D2 ¼ �A=�B

[24]. For all points below the dashed line, the necessary
condition of separability is violated. We see that with the
transverse modes properly matched, it is violated by more
than 5 standard deviations. Similar behavior is observed if
D2 is scanned at fixed D1.
Hence, we have experimentally demonstrated that the

macroscopic singlet Bell state is polarization nonsepar-
able. Note that it is prepared pure, and only imperfections

FIG. 2 (color online). Top: The experimental setup.
Orthogonally polarized SVs are generated in two �-barium
borate (BBO) crystals and overlapped at a polarizing beam
splitter (PBS); the pump is eliminated by dichroic mirrors
(DM) and a long-pass filter (OG). The interferometer is balanced
using trombone prisms. A dichroic plate (DP) is inserted for
producing the macroscopic singlet state. Two apertures (A1 and
A2) placed in the focal plane of a lens select the angular spectra
of the beams at two wavelengths, separated by dichroic mirror
DM1 and joined together by dichroic mirror DM2. The mea-
surement part also includes a Glan prism (GP), a half-wave or
quarter-wave plate (HWP and QWP, respectively), and two
detectors. Bottom left: Number of photons per pulse versus the
pump power. Bottom right: Variance of the Stokes observable
versus the direction in 3D (the object inside the sphere, which
shows the shot-noise level).
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of the detection setup make it mix with the vacuum. A pure
nonseparable state should be able to violate Bell’s inequal-
ities [25], but apparently a new form of Bell’s inequality
should be derived for this state.

Photon-number entanglement of the singlet Bell state (2)
can be characterized by noticing that the state can be
rewritten as a product of two Schmidt decompositions in
the Fock basis:

j�ð�Þ
maci ¼ j�1i

O j�2i;

j�1i �
X1

n¼0

ffiffiffiffiffiffi
�n

p jniAHjniBV;

j�2i �
X1

m¼0

ð�1Þm ffiffiffiffiffiffiffi
�m

p jmiAVjmiBH:

Here, �n � tanh2n�=cosh2�, and the notation jniAH means
a Fock state in beam A with n photons in the horizontally
polarized mode. The notation for beam B and mode V is
similar. Clearly, the state can be represented as a product of
two entangled states, one of them involving modes AH and
BV and the other one modes AV and BH.

For each of the states j�1;2i, the Schmidt number is

K1 ¼ K2 ¼ 1þ 2N0, whereN0 � sinh2� is the mean pho-
ton number. The total Schmidt number is their product.
Note that neither of the states j�1;2i, taken separately,

violates condition (3), although they both manifest
photon-number entanglement. This shows that there is a
difference between polarization and photon-number entan-
glement of macroscopic Bell states.

If there are many (M) independent frequency-wave vec-
tor mode pairs, each containing a state of the form (2),
then the total Schmidt number is given by the product K ¼
ð1þ 2N0Þ2M, which is extremely large. Under certain ex-
perimental conditions, this huge amount of entanglement

could be used. However, in our experiment we treat the
whole ensemble of modes jointly; moreover, the detection
scheme also combines the two wavelengths. With the only
partition being the polarization one, the Schmidt decom-
position for our state can be written as for a two-mode SV,
but with �n given by the Poissonian distribution [26] with
the mean value N � 2MN0. Then the Schmidt number can
be calculated as K ¼ e2N=I0ð2NÞ, where I0 is the zero-
order modified Bessel function of the first kind. At largeN,

K � 2
ffiffiffiffiffiffiffiffi
�N

p
. In our experiment, this yields K � 103.

This is much less than in the single-mode case, because
we do not address each mode separately and deal only
with their ensemble. We stress that the Schmidt number is
not an operational measure as it cannot be directly mea-
sured in experiment. However, there exists its operational
counterpart.
Operational measure.—The Schmidt number can be

understood as the effective number of the Schmidt modes.
For continuous variables like wave vectors or frequencies
of single photons, its operational counterpart was proposed
[27] as the ratio of the unconditional width of one sub-
system with respect to some parameter to the width of the
corresponding conditional distribution.
By analogy, consider the following procedure. In experi-

ment, we obtain the photon-number probability distribu-
tion in beam B (unconditional distribution). Next, we
measure the photon-number conditional distribution for
beam B by postselecting only those pulses for which the
photon number in beam A is fixed or within certain narrow
bounds. The ratio R of the widths for the two distributions
can be considered as a measure of entanglement. Note that
the narrowing of the photon-number conditional distribu-
tion is typical for twin beams [28] but was never applied to
quantify entanglement.
For each pair of correlated modes (for instance,

AH � BV), the joint probability distribution contains a
factor �nA;nB [Fig. 4(a)]. Therefore, while the unconditional

distribution for beam B has a negative exponential shape,
the conditional probability is only nonzero for a single
value of nB. In the case of many modes with small mean
photon numbers, the unconditional distribution is
Poissonian [Fig. 4(b)], while the conditional distribution

is again of unity width. This gives R ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2N ln2

p
, almost

coinciding with the Schmidt number. For a more detailed
analysis of R and other measures of entanglement for the

state j�ð�Þ
maci, see Ref. [29]. Unfortunately, the conditional

distribution gets broadened due to losses, and the resulting
R value becomes R� ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �

p
, where � is the overall

detection efficiency. Thus, the accessible degree of entan-
glement is given by only the detection efficiency and turns
out to be much less than the Schmidt number. This is an
agreement with the fact that the ratio R is applicable only
to pure states, while the losses make the state not pure.
Another disadvantage of R is that it is not sensitive to the
phases contained in the wave function and thus can
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FIG. 3 (color online). The left-hand part of the separability
condition (3) versus the diameter of aperture A1, the other
aperture diameter being 8.9 mm. The dashed line is the boundary
set by the separability condition.
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underestimate the entanglement [30]. However, the state

j�ð�Þ
maci, in theory, contains no nontrivial phases.
In our experiment, the unconditional distribution was

obtained by plotting the photon-number histogram for an
ensemble of 20 000 pulses. Because the distribution was
broadened due to the excess noise of the pump, we found
the numerator of the R ratio by measuring the width of
photon-number histogram for a shot-noise limited source
with the same mean photon number [Fig. 4(c), red solid

line]. The conditional distribution for the j�ð�Þ
maci state was

measured by postselecting only those pulses for which the
photon number in the idler channel differed from the mean
value by not more than 50 and plotting the photon-number
histogram in the signal channel [Fig. 4(c), green dashed
line]. The degree of entanglement is then measured to be
1:53� 0:05. This corresponds to the detection efficiency
� ¼ 0:57.

The triplet states.—We have proved the violation of the
separability condition (3) for the macroscopic singlet Bell
state. Since the triplet states can be obtained from the

singlet one via local unitary transformations, they are en-
tangled as well. The separability conditions for these states
can be derived from condition (3) via the corresponding
unitary transformations [29].
The Schmidt decomposition for the triplet states is simi-

lar to the one for the singlet state, and the Schmidt number
is the same. The only difference is that, for the singlet state,
the polarization modes can be chosen in any way. For each
of the triplet states, there is a unique choice of polarization
modes to see entanglement: It should be horizontally and

vertically polarized modes for j�ðþÞ
maci, diagonally polarized

modes for j�ð�Þ
maci, and right- and left-circularly polarized

modes for j�ðþÞ
maci [13].

In conclusion, we have tested the macroscopic singlet
Bell state, containing two beams of different wavelengths,
for separability. The results convincingly prove that the
state is nonseparable with respect to polarization observ-
ables. As the photon numbers per pulse are as high as 105,
and the state is prepared pure, this can be considered as a
proof of macroscopic entanglement. As a measure of
photon-number entanglement, we have calculated the
Schmidt number, which turned out to be given by the total
number of photons in a pulse. Theoretically, our multi-
photon state is highly entangled. The entanglement can be
confirmed by the measurement of the photon-number dis-
tribution for one beam (unconditional distribution) and the
distribution conditioned on registering a certain number of
photons in the other beam (conditional distribution). As the
former is broader than the latter, the state is photon-number
entangled. The measured degree of entanglement and
separability condition violation are both reduced due to
the inefficient detection. However, there is apparently a
difference between photon-number and polarization
entanglement.
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