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In the setting of networked computation, data security can be a significant concern. Here we consider

the problem of allowing a server to remotely manipulate client supplied data, in such a way that both the

information obtained by the client about the server’s operation and the information obtained by the server

about the client’s data are significantly limited. We present a protocol for achieving such functionality in

two closely related models of restricted quantum computation—the boson sampling and quantum walk

models. Because of the limited technological requirements of the boson scattering model, small scale

implementations of this technique are feasible with present-day technology.
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Introduction.—Quantum information processing [1] al-
lows certain key problems, which are believed to be clas-
sically hard, to be efficiently solved. Well-known examples
with real world applications include Shor’s algorithm for
integer factorization [2] and Grover’s search algorithm [3].
One of the more promising approaches to implementing
quantum algorithms is linear optics quantum computation
(LOQC) [4,5], where information is encoded into single
photons and then their wave properties are manipulated
using linear optics elements. Photons are ideally suited to
communication, leading naturally to models of distributed
quantum computation.

A key consideration in any distributed computation
scheme is security. Consider two parties, Alice and Bob.
Alice has some data to which she would like to apply a
computation, whilst Bob has a quantum computer and an
algorithm with which he can process the data. However,
both sides have proprietary knowledge. Alice wants to
keep her data secret from others, and Bob wants to keep
his algorithm secret. This is related to the problem of
homomorphic encryption which allows data to be manipu-
lated without decrypting, so Bob can perform a universal
set of operations on Alice’s data without ever learning
Alice’s input state. Universal classical homomorphic en-
cryption was only first discovered in 2009 [6] and subse-
quently simplified [7]. Closely related is blind computing,
where Alice possesses both the data and the algorithm, and
Bob owns the computer [8–14], as is the quantum private
queries protocol [15], which is used to query a database
while keeping the query secret. The key difference be-
tween the two is who possesses the algorithm. In the case
of blind quantum computing it is Alice, whereas in homo-
morphic encryption it is Bob. As a result of this difference,
perfect blindness is impossible in this context, as we will
discuss later.

In this Letter, we describe a technique for solving the
above problem, and hence achieving a limited quantum

homomorphic encryption using the boson sampling and
multiwalker quantum walk models for quantum computa-
tion. We have restricted ourselves to the boson sampling
model as it does away with the requirement for feedforward,
enabling our technique to work. However, while limited, the
boson sampling model is of interest as it is believed to
implement a classically hard algorithm, and, unlike full
LOQC, is foreseeable with present-day technology.
The boson sampling model.—A first protocol for univer-

sal LOQC was introduced by Knill, Laflamme, and
Milburn (KLM) [4]. While universal for quantum compu-
tation, their protocol is extremely demanding, requiring
fast-feedforward and quantum memory, which are techno-
logically challenging and well beyond the capabilities of
present-day experiments. Since then numerous simplifica-
tions have been proposed, most notably approaches based
on cluster states [16–18], which significantly reduce physi-
cal resource requirements. However, they remain very
demanding to implement.
Recently Aaronson and Arkhipov [19] introduced a

much simplified model for LOQC, known as the boson
sampling model. While not believed to be universal, it was
shown that this protocol very likely implements an algo-
rithm which cannot be efficiently classically simulated
(efficient classical simulation would likely imply a col-
lapse in the polynomial hierarchy, PH [19]). The protocol
does away with fast-feedforward and quantum memory,
requiring only a multiphoton input state, a purely linear
optics network, and photodetection.
In the photon number basis, the input state is of the form

jc ini ¼ j11; . . . ; 1p; 0pþ1; . . . ; 0mi, or any permutation

thereof, where there are p photons and m modes. To the
input state a unitary map is applied, which implements the

transformation ayi ! P
jUija

y
j on the photon creation op-

erators. It was shown by Reck et al. [20] that any such U
can be efficiently constructed using a linear network com-
prising only beam splitters and phase shifters.
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In an occupation number representation, the output state

is of the form jc outi ¼ P
S�SjnðSÞ1 ; nðSÞ2 . . . ; nðSÞN i, where S

are the different photon number configurations, �S are the

associated amplitudes, and nðSÞi is the number of photons in

mode i for a given configuration S. Each amplitude is
proportional to a matrix permanent, whose calculation re-
sides in the complexity class #P-complete, giving rise to
the believed classical hardness of calculating the output
distribution.

The multiwalker quantum walk model.—Another inter-
esting approach to LOQC is the quantum walk model
[21–24]. Here our physical system comprises a graph in
which walkers (i.e., photons) are placed at vertices and are
allowed to coherently ‘‘hop’’ along the edges. The restric-
tion to linear optics means that we consider only noninter-
acting walkers. The evolution is decomposed into two
stages—coin (C) and step (S) operations. The coin coher-
ently manipulates an ancillary parameter known as the
coin value, while the step operator updates the position
(i.e., vertex) of the walker according to the direction speci-
fied by the coin. The evolution of the system proceeds by
repeated application of coin and step, jc outi ¼ ðSCÞtjc ini.
Rohde et al. [25] recently introduced a formalism for
multiwalker quantum walks on general graphs. Indeed,
numerous authors have begun experimentally demonstrat-
ing elementary optical quantum walks [26–30].

It can be shown that any unitary map on the photon
creation operators can be decomposed into a noninteract-
ing quantum walk, and similarly any noninteracting quan-
tum walk can be expressed as such a unitary network [31].
As with boson sampling, no measurement or feedforward
is performed within the evolution of the quantum walk.
Thus there is a natural isomorphism between the two
formalisms. We therefore refer to boson sampling and
multiwalker quantum walks on general graphs inter-
changeably. Boson sampling can be regarded as a classi-
cally hard task performed by a quantum walk.

Homomorphically encrypted boson sampling and
quantum walks.—The first step in our protocol is to encode
the boson sampling input state into the polarization basis.
Suppose there aremmodes. Then for every mode in which
a photon should be present we introduce a photon in the
horizontal polarization (H), and for every mode in which
no photon should be present we introduce a photon in the
vertical polarization (V). Thus, there are always exactly m
photons in the system and the number of H’s in the input
state is equal to the number of photons in the correspond-
ing nonpolarization-encoded state. For example, if the
boson sampling computer is supposed to be initialized
with the input state j0; 1; 1; 0; 0; 1i, we would encode this
using six photons as jc ini ¼ jV;H;H; V; V;Hi. Next we
note that if we employ polarization-resolving photodetec-
tion at the output, and only measure those photons in theH
polarization while discarding all the V photons, the opera-
tion of the circuit is identical to the desired boson sampling

computer, because the H and V photons will not interfere.
On the other hand, if we employ nonpolarization-resolving
detectors, the output will effectively be corrupted.
Alice begins by preparing an encoded input state

jc encodedi ¼ Rðk�d Þ�mjc ini, where

Rð�Þ ¼ cos� � sin�
sin� cos�

� �

is a polarization rotation operator, which can be imple-
mented using wave plates, d is the number of divisions in
the choice of rotation angle, and k represents the kth
division. Alice chooses k randomly in the range 0 to
d� 1. k can be regarded as Alice’s private key. Thus
from Bob’s perspective, the encoded state is a mixture of
input states rotated by different angles, and it is this added
noise that will allow Alice to hide her data from Bob. With
d divisions, the basis of each choice of encoded state is
rotated by �=d from the previous. The choice of k is
retained only by Alice, while the encoded state is commu-
nicated to Bob, who, not knowing the basis in which to
measure, perceives a mixed state. At the end of the com-
putation Alice measures the output state in the polarization
basis given by Rðk�d Þ, allowing perfect reconstruction of the
desired output state using polarization-resolving photode-
tection. As the same polarization rotation is applied to all
spatial modes, the resulting operation is symmetric. This
means that, in general, the input state is imperfectly hid-
den, because the overlap with symmetric and antisymmet-
ric states remains constant.
Information theoretic analysis.—We now consider the

security of our protocol in the context of Bob’s probability
of correctly inferring Alice’s input state. To do so, we
calculate the Holevo information [1] of the state sent
from Alice to Bob. The Holevo quantity provides an upper
bound on the amount of information Bob can extract from
Alice’s encoded state. Formally, the Holevo quantity of our
protocol is given by

�ðmÞ ¼ �Trð�log2�Þ þ 1

2m
X2m�1

i¼0

Trð�ilog2�iÞ;

where � ¼ 1
2m

P
2m

i¼1 �i, and �i ¼ P
d�1
k¼0

N
m
j¼1 Rðk�d ÞjPiji�

hPijjRð� k�
d Þ, and jPiji ¼ jHi when the jth bit of i is 0,

otherwise jPiji ¼ jVi.
While a closed form for the Holevo information for

arbitrary values of d and m is likely too much to hope
for, we can calculate the scaling of the Holevo information
for d � m. To do this, we first note that becauseN

m
j¼1 jPiji for the various values of i form a complete

basis on the space of input states, � is the maximally mixed
state. Therefore, �Trð� log2�Þ ¼ m. Next we note that
�Trð�i log2�iÞ is independent of i, and hence it is suffi-
cient to consider only the case of i ¼ 0. We consider

the change of basis j0i ¼ ðjHi þ ijViÞ= ffiffiffi
2

p
, j1i ¼

ðjHi � ijViÞ= ffiffiffi
2

p
. As �0 is a mixed state of symmetric
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states, it resides entirely in the symmetric subspace, which
has dimension nþ 1. Thus a complete basis is formed by
the states j‘im, the symmetric state of m qubits containing
exactly ‘ qubits in state j1i, and the rest in state j0i. In this
basis, the density matrix �0 is given by

�0 ¼ 1

2m
Xd�1

k¼0

Xm
a;b¼0

ei½ðb�aÞk�=d�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m
a

� �
m
b

� �s
jaimhbjm:

From this, we can see that the cross terms go to zero for

large d because in this case
P

d�1
k¼0 e

iððb�aÞk�=dÞ ! 0. In such
a case the density matrix is diagonal, and hence we have

Tr ð�ilog2�iÞ ¼ 1

2m
Xm
a¼0

m
a

� �
log2

�
1

2m
m
a

� ��
;

which is simply the entropy of the binomial distribution.
This value is known to be 1

2 log2ð12�emÞ þOð1=mÞ, and
hence the Holevo quantity scales as

�ðmÞ ¼ m� 1

2
log2

�
1

2
�em

�
þO

�
1

m

�
:

Hence the protocol hides 1
2 log2ð12�emÞ þOð1=mÞ bits of

information for suitably large d.
We note that if Bob has no prior information about

Alice’s chosen state, the probability that Bob correctly
infers Alice’s state can be bounded as follows. Let �X be
the density matrix Bob receives from Alice when her input
string is X. Bob must make a measurement on this state to
determine his guess for X, which we denote as ~X. Without
loss of generality we can view Bob’s measurement as
a positive-operator valued measure with 2m distinct ele-
ments fP ~Xg2m�1

~X¼0
, each corresponding to a unique choice of

~X. Thus, the probability of Bob correctly determining
whether a given state, encoding an input state chosen
uniformly at random, corresponds to X is

Pð ~X ¼ XÞ ¼ 1

2m
TrðP ~X� ~XÞ þ

1

2m
Tr½ðI� P ~XÞðI� � ~XÞ�

¼ 1

2m
f2m � 1� Tr½P ~XðI� 2� ~XÞ�g:

If e ~X is the maximum eigenvalue of � ~X, then the above
probability is bounded from above by

Pð ~X ¼ XÞ � 1

2m
½2m � 1� ð1� 2e ~XÞTrðP ~XÞ�:

However, as we have shown, for large d the density matrix
� ~X tends to a binomial distribution over mþ 1 states.
Thus, the maximum eigenvalue of � ~X is given by

2�m m
bm=2c

� �

which approaches
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2=�m

p
. Therefore, for sufficiently large

m and d, we have

Pð ~X ¼ XÞ � 1

2m

�
2m � 1�

�
1�

ffiffiffiffiffiffiffiffi
8

�m

s �
TrðP ~XÞ

�
:

Averaged over all states this gives

�P ¼ 1

2m
X2m�1

~X¼0

Pð ~X ¼ XÞ �
ffiffiffiffiffiffiffiffi
8

�m

s
:

Thus, the probability of Bob guessing Alice’s input string

is bounded from above by
ffiffiffiffiffiffiffiffiffiffiffiffiffi
8=�m

p
for sufficiently large m

and d.
The privacy of Bob’s secret is more straight forward to

prove. As Bob simply performs his secret operation upon
Alice’s input and returns it to her, the information Alice
obtains is exactly the same as if she makes a single query to
a black box function, and so Alice obtains the minimum
possible information about Bob’s secret unitary. An alter-
nate approach for Alice is to run many computations with
different input states, where only one is her desired state
and the remainder are dummies. However, this would
allow Alice to extract more information about Bob’s algo-
rithm and is therefore less desirable for Bob.
While one might hope for a protocol which does not leak

any information about Alice’s input to Bob, this is in fact
impossible, as such a protocol would allow perfectly se-
cure bit commitment [32]. To see this, we simply note that
an n mode interferometer can implement any operation in
SUðnÞ on the single photon subspace, and hence Bob could
choose to implement a unitary which on input jii � j0i
outputs jii � jdii, where di is the ith element of some
database held by Bob. If Alice’s input remains secret,
then such a set up would implement oblivious transfer
which, in turn, implies the existence of a secure bit com-
mitment protocol. By leaking some information to Bob, it
is possible to circumvent existing no-go theorems for bit
commitment and oblivious transfer [33]. However, a de-
tailed analysis of the tightness of the present protocol to the
bounds imposed by such no-go theorems is beyond the
scope of this Letter.
The random attack.—The naive attack to infer Alice’s

state is to simply perform a measurement in a randomly
chosen basis. We now demonstrate that this simplistic
approach is almost optimal and thus more elaborate attacks
are unwarranted. The average squared overlap between
two states encoded with random keys is

hjhajbij2i ¼ X
�

pð�Þsin2hð�Þcos2h0 ð�Þ;

where h is the Hamming distance between strings a and b,
and hþ h0 ¼ m. For a large number of divisions d, the
overlap is plotted in Fig. 1.
Note that the overlap is minimized when h ¼ m=2.

Thus, it is easier to discriminate between states with
Hamming distance close to m=2, and harder to distinguish
states with lower or higher Hamming distance. One way
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Bob can make use of this property is to choose a key at
random and measure all photons in this basis. As the
measurement basis is virtually certain not to be unbiased
with respect to the encoding basis, the string corresponding
to the output of such a measurement will then be correlated
with either the input string or its complement. Therefore,
Bob can distinguish between states with Hamming dis-
tance sufficiently close to m=2.

Nonetheless, Bob cannot perfectly infer Alice’s secret
input state if he has no prior information on the distribu-
tion. To see this, we note the overlap between H
or V and a rotated H or V exhibits the property
jhHjRð�ÞjHij2 ¼ jhVjRð�ÞjVij2 ¼ cos2�. Consequently,
the probability of Bob’s measurement results being per-
fectly correlated with Alice’s secret state, given m modes
and m photons, is jhc jRð�Þ�mjc ij2 ¼ cos2m�, where jc i
is Alice’s input state and � is that angle between Alice’s
chosen encoding basis and Bob’s measurement basis.

If Bob chooses a polarization basis at random, the
average probability that he will successfully infer the
correct state is

pav ¼ 1

d

Xd�1

j¼0

cos2m
�
j�

d

�
:

Figure 2 plots the value of this quantity for a range of
values of d and m. From it, two trends are clear. First,
increasing m decreases the probability of correctly identi-
fying Alice’s secret state. Second, increasing d also de-
creases this probability, though it tends to be a constant
value, consistent with the bounds obtained from the Holevo
information. For a large number of modes limm!1pav ¼
1=d, and for a large number of divisions limd!1pav ¼
�ðmþ 1=2Þ= ffiffiffiffi

�
p

m!, which scales as 1=
ffiffiffiffiffiffiffiffi
�m

p
for large m.

Thus, this attack has a success probability close to the

theoretical limit of
ffiffiffiffiffiffiffiffiffiffiffiffiffi
8=�m

p
.

Outlook and conclusion.—We note that the described
approach to security is very specific to the boson sampling
and quantumwalk models for LOQC, and will not work for
the KLM protocol. This is because KLM requires adaptive
measurement, which would require Alice disclosing the
appropriate measurement basis to Bob in order for him to
perform the appropriate measurement and feedforward.
Thus, the security of this protocol relies on the unique
property that there is no measurement or feedforward
within the circuit.
A beneficial feature of this protocol is that only one

round of communication is needed in each direction be-
tween Alice and Bob—Alice prepares a mixed state, sends
it to Bob to which he applies the computation and returns it
back to Alice. This guarantees that the amount of informa-
tion revealed about Bob’s operation is no more than in the
ideal case.
The described approach is technologically trivial. If we

have the ability to implement boson sampling or quantum
walks, they can be encrypted simply with the addition of
randomized wave-plate angles before and after the compu-
tation. Therefore, the ability to implement encryption of
these protocols is foreseeable.
Our protocol relies on Alice performing random rota-

tions about the y axis on the Bloch sphere. However, it can
be shown that more general rotations about a randomly
chosen axis do not improve the asymptotic security of the
scheme.
A key open question for the multiwalker quantum walk

model is its applicability. Boson sampling can be regarded
as an application of quantumwalks. However, while shown
to be likely classically hard to simulate, no specific algo-
rithmic applications have been identified. While isomor-
phic to the boson sampling model, the multiwalker
quantum walk model may prove more fruitful for algo-
rithm design, because it is inherently graph theoretic in
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nature and may therefore naturally lend itself to the devel-
opment of graph theoretic algorithms.

We emphasize that our protocol does not guarantee that
Bob learns nothing about Alice’s data, but rather that the
information Bob obtains is incomplete, asymptotically re-
ducing Bob’s probability of successfully reconstructing the
input or output state. The trade-off that must be paid for
improved security is a large number of randomized rotation
settings and a larger interferometer.

In conclusion, we have presented a simple yet effective
approach to encrypted quantum computation using two
recent models for LOQC. The requirements for this protocol
are well within current technological capabilities and could
be readily implemented with present-day technology.
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