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According to the quantum Zeno effect (QZ), frequent observations of a system can dramatically slow

down its dynamical evolution. We show that the QZ is a physical consequence of the statistical

indistinguishability of neighboring quantum states. The time scale of the problem is expressed in terms

of the Fisher information and we demonstrate that the Zeno dynamics of particle entangled states might

require quite smaller measurement intervals than classically correlated states. We propose an interfero-

metric experiment to test the prediction.
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Introduction.—By watching a quantum system we can
freeze its dynamical evolution [1]. This vindicates one of
the classical Zeno paradoxes arguing that at every instant
of time a flying arrow is motionless since it occupies a
space equal to its own length. An infinite sum of zero
displacements is still zero and therefore the arrow does
not move [2]. In the quantum world, Zeno’s prediction
would be confirmed experimentally if we try to measure
the displacements at each instant of time. The nonunitary
measurements (or unitary strong couplings with external
systems [3]) will repeatedly bring back the arrow to its
initial position. The central result of this Letter is to show
that this happens if, and only if, the different quantum
states of the flying arrow are statistically indistinguishable
in terms of the measurement results.

The quantum Zeno effect (QZ) has raised and contin-
ues to gather widespread interest mainly for two reasons:
for its foundational implications about the nature of
a ‘‘quantum measurement’’ [4] and for its techno-
logical applications in quantum information. Indeed, the
QZ can be exploited, for instance, to create decoherence-
free regions for quantum computation protocols [5–7].
Various aspects of the QZ have been experimentally
demonstrated with ions [8], polarized photons [9], cold
atoms [10], and dilute Bose-Einstein condensed gases
[11]. The paradoxical (or, at least, surprising) nature of
the problem, however, had sometimes obscured its physi-
cal significance [4,12].

The basics of the quantum Zeno effect can be illustrated
with a Hamiltonian H driving a pure state jc 0i to an

orthogonal state jc ðtfÞi ¼ e�iH tf jc 0i at time tf. The

survival probability, namely the probability to find the
evolved state in its initial configuration, is PðtfÞ ¼
jhc 0jc ðtfÞij2 ¼ 0. Suppose now that during the

dynamics the system is probed m times at intervals � ¼
tf=m with projective measurements � ¼ jc 0ihc 0j. The
survival probability becomes PðtfÞ ¼ jhc 0je�iH ��
�e�iH �:::�e�iH �jc 0ij2 ¼ jhc 0jc ð�Þij2m. For small �

we can expand e�iH � up to second order and have:

PðtfÞ ¼ jhc 0jc ð�Þij2m ’ 1�m�2H �2; (1)

where �2H is the variance of the energy. The initial state
does not evolve with time and remains frozen to its initial
configuration with survival probability PðtfÞ ’ 1 when

m�2H �2 ¼ �2H t2f=m � 1, which can be always satis-

fied with a sufficiently large number of measurements m
(small measurement intervals �) [13].
The quantum Zeno effect does not necessarily freeze the

system. If the measurements project on a multidimensional
subspace, the state can freely evolve within it [14]. Let’s

consider a unitary dynamics e�iH t�0e
iH t in the Hilbert

space H and projections � not commuting with the
Hamiltonian. The initial state �0 is taken in the ‘‘Zeno
subspace’’ H� ¼ �H so that �0 ¼ ��0� and
Tr½�0�� ¼ 1. A sequence of m observations can repeat-
edly bring the system back inside H� with survival
probability

PðtÞ ¼ Tr½Vð�Þm�0V
yð�Þm�; (2)

and final state

�ðtÞ ¼ Vð�Þm�0V
yð�Þm

PðtÞ ; (3)

where Vð�Þm ¼ ð�e�iH ��Þm and � ¼ t=m. In the limit
m ! 1, Eq. (3) evolves unitarily inside the Zeno subspace,

e�iH�t�0e
iH�t, with H� ¼ �H� and PðtÞ ! 1 [14].

Such ‘‘Zeno dynamics’’ is the most general manifestation
of the quantum Zeno effect.
In the following we demonstrate that the Zeno dynamics

is a physical consequence of statistical indistinguishability.
The small parameter of the theory is written in terms of the
Fisher information, which provides a measure of distin-
guishability in the space of density operators. We show that
particle entangled states might require quite smaller mea-
surement intervals than classically correlated states and we
finally propose an interferometric experiment to test the
prediction.
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Zeno dynamics, distinguishability of quantum states,
and Fisher information.—We first shortly review the con-
cept of statistical distinguishability. Let’s consider a path
parametrized by � through the space of quantum states
(� can be, for instance, a phase shift due to the interaction
with some external perturbation or an elapsed time).
Wootters introduced the concept of statistical length (or
distinguishability) [15] as the number of states along the
path which can be physically discriminated with a large
numberm of measurements. In the limitm � 1, the small-
est path interval �d ¼ �1 � �0 such that two states �ð�0Þ
and �ð�1Þ are statistically distinguishable is [15]:

�d ¼ 2
ffiffiffiffi
m

p ffiffiffiffiffiffiffiffiffiffiffiffi
Fð�0Þ

p : (4)

The leading role in the theory is played by the Fisher
information:

Fð�Þ ¼
Z

d�
1

P ð�j�Þ
�
dP ð�j�Þ

d�

�
2
; (5)

where P ð�j�Þ ¼ Tr½Mð�Þ�ð�Þ� is the likelihood, i.e., the
conditional probability to obtain from the measurement a
value � for a given � and Mð�Þ is a generic observable
with

R
d�Mð�Þ ¼ I (identity). We will further discuss

Eqs. (4) and (5) at the end of this section.
We now show that the Fisher information plays a central

role in the quantum Zeno dynamics. The first step is to
expand the survival probability Eq. (2) for small time
intervals � [16]:

PðtÞ ’ 1�m�2H�2; (6)

where H ¼ H �H�. The initial state �0 evolves in the
Zeno subspace when m�2H�2 � 1 [17].

The projective measurements have only two possible
outputs, which we call ‘‘yes’’ and ‘‘no,’’ corresponding to
the evolved state being projected inside the Zeno subspace

with probability P ðyesj�Þ ¼ Tr½�e�iH ��ðtÞeiH ��� or
gone with P ðnoj�Þ ¼ 1� P ðyesj�Þ. After replacing these
probabilities in Eq. (5) we have

Fð�Þ ¼
�
P ðyesj�Þ

@�

�
2 1

P ðyesj�Þ½1� P ðyesj�Þ� : (7)

Expanding in �, P ðyesj�Þ ’ 1��2H�2 and we obtain

Fð�Þ ¼ 4�2H þOð�4Þ: (8)

Notice that the Fisher information is independent from
time t ¼ m�, i.e., from the number of measurements m
and from � up toOð�4Þ [16]. By replacing (8) in (6) we can
write the survival probability in terms of the Fisher infor-
mation:

PðtÞ ’ 1� F

4m
t2 ¼ 1�

�
�

�QZ

�
2
: (9)

Equation (9) quite generally describes the quantum Zeno
dynamics from the case of simple projective measurements
to more sophisticated ‘‘bang-bang’’ and continuous mea-
surements. The ratio �=�QZ is the small parameter of the

theory, with the quantum Zeno time

�QZ ¼ 2ffiffiffiffiffiffiffiffi
mF

p ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m�2H

p ; (10)

providing the natural time scale of the problem: QZ is
created by measurements made at intervals smaller than
�QZ. Moreover, by comparing (4) and (10), we have that

�QZ ¼ �d: (11)

The Zeno time �QZ coincides with the largest interval �d
such that the two states remain indistinguishable.
Equations (9)–(11) summarize the main result of this

Letter. The quantum Zeno dynamics is the physical conse-
quence of an interval � between measurements small

enough such that the set of evolved states f�1 ¼
e�iH ��ðtÞeiH �gwith t ¼ k�; k ¼ 0; 1; . . .m is statistically
indistinguishable from the corresponding initial states
f�ðtÞg in terms of the m consecutive measurements done
during the dynamics. For pure states, this concurs to an

evolved state jc ð�Þi ¼ e�iH �jc 0i being statistically indis-
tinguishable from the initial state jc 0i with m projective
measurements. As a consequence of indistinguishability
each projection steadily brings back the evolved state inside
the Zeno subspace with survival probabilityPðtÞ ! 1when
� ! 0, m ! 1, t ¼ m�.
Before continuing, it is worth looking back at the Fisher

information. Equations (4) and (5), are a general result of
statistical analysis which holds in, both, quantum and
classical frameworks. This is because Fð�Þ only depends
on conditional probabilities which can naturally incorpo-
rate quantum fluctuations and low detection efficiencies,
noise and decoherence [18]. However, the Zeno dynamics
is a purely quantum effect and the results Eqs. (9)–(11) are
obtained assuming a unitary evolution of a generic density
operator. The analysis remains valid, in principle, also in
the presence of an ‘‘environment’’ but with the crucial
caveat to consider the full Hamiltonian of the system.
Quite obviously, in the case of a ‘‘strong environment’’
the Zeno time scale might turn out to be so small that it
makes the Zeno dynamics unaccessible. Extensions of the
theory by considering more general positive operator val-
ued measurements (POVM) [4] and nonunitary evolutions
[19] would therefore not modify the conceptual framework
but would still deserve further investigation [20].
Quantum Zeno dynamics and entanglement.—A second

important consequence of the relation between the Fisher
information and the Zeno dynamics is that �QZ Eq. (10) can
be much smaller for entangled states than for separable
states. To illustrate this point let’s consider, as a simple
example, the dynamics of N qubits governed by a local
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Hamiltonian H ¼ !
P

N
l¼1 ~�l ~nl, where ~�l are Pauli matri-

ces and ~nl unit vectors. If the state is classically correlated,
namely, it can be written as a convex combination of N
qubits separable states:

�sep ¼
X

k

pk�
ð1Þ
k � �ð2Þ

k � ::: � �ðNÞ
k ; (12)

then the Fisher information is bounded by F � N!2 [22].
Therefore, for separable states, the quantum Zeno time
scale is:

�QZ � 2

!
ffiffiffiffiffiffiffiffi
mN

p : (13)

On the other hand, the highest possible value of the Fisher
information, saturable with a maximally entangled state, is
F � N2!2. Therefore, a sufficient condition for the pres-
ence of entanglement is F >N!2 [22]. This class of en-
tangled states has a quantum Zeno time scale

2

!N
ffiffiffiffi
m

p � �QZ <
2

!
ffiffiffiffiffiffiffiffi
Nm

p ; (14)

which can be smaller up to a factor
ffiffiffiffi
N

p
than the Zeno time

of separable states. The consequence of (13) and (14), is
that the Zeno dynamics can require a much higher rate of
measurements if the state is entangled rather than
separable.

This prediction can be tested experimentally with Mach-
Zehnder (MZ) interferometers. A MZ interferometer is
mathematically described by a unitary evolution which
rotates the initial state in the Bloch sphere by an angle
corresponding to the phase shift � applied between the two
arms of the interferometer [16] jc ð�Þi ¼ e�iJy�jc inpi.
As jc inpi we consider a state made of N particles and the

generator of the phase shift � is Jy ¼ 1
2

P
N
l¼1 �

ðlÞ
y . Let’s

consider m Mach-Zehnder interferometers sequentially
connected so that the output state at the ports fcj; djg
of the jth interferometer becomes the input state at the
ports fajþ1; bjþ1g of the next one as in Fig. 1(a). In each

interferometer we apply a phase shift �=m. The rotation

of the initial state is simply given by jc ð�Þi ¼Q
m
i¼1 e

�iJy�=mjc inpi which is obviously equivalent to a

single MZ interferometer with a phase shift �. We choose
as input of the first MZ interferometer a mode-separable
state jc inpi ¼ jc aijc bi [23]. In order to study the quan-

tum Zeno dynamics, we cut the connections at the output
ports c1; c2; . . . ; cm. We can leave undetected the particles
which might exit those ports. The input ports a1; a2; . . . ; am
are instead injected with a state identical to the initial one
jc ai, see Fig. 1(b). What is the final state of the interfer-
ometer? If the number m of interferometers is sufficiently
large (the phase shift �=m suffficiently small), than the the
state in output is equal to the state entering the input ports
of the the first MZ interferometer.

How large does m have to be? Let’s consider first
the case of a classically particle correlated input jc inpi ¼
j0iajNib [23]. This state has a Fisher information F ¼ N.

The survival probability to have in output the same state as
in input, i.e., to detect N and 0 particles at the output ports
of the last interferometer, is Pð�Þ ’ 1� N

4m �
2, cf. Eq. (9)

[16]. When the number of measurements m � N we can
observe, in agreement with Eq. (13), the Zeno effect.
Entanglement changes the scenario. Let’s inject the

previously unused ports with a Fock state having the
same number of particles as the second port, jc inpi ¼
jN=2iajN=2ib. This is a particle entangled state with the
Fisher information F ¼ N2=2þ N [23]. The survival
probability to detect N=2 and N=2 particles at the output

ports of the last interferometer is Pð�Þ ’ 1� N2

8m �
2 [16].

In contrast to the previous case and in agreement with
Eq. (14), we observe Zeno dynamics only when the num-
ber of measurements (andMZ interferometers) ism � N2.
In other words, with entangled states the phase shift �=m in
each interferometer might need to be smaller by a factor

1=
ffiffiffiffi
N

p
with respect to classically correlated states. The

Fisher information of the two states j0iajNib and
jN=2iajN=2ib with N ¼ 4 has been measured experimen-
tally in Ref. [24] along with the implementation of a full
phase estimation analysis.
It is worth emphasizing that equivalent protocols can be

implemented when the total number of particles is not fixed
and/or with cold atoms and resonant pulses between inter-
nal hyperfine levels. To illustrate this point, let’s briefly
consider the experimental setup of Ref. [8], which was
based on the proposal [25] considering a three-level atom,
see Fig. (2). The two modes a, b of the Ramsey interfer-
ometer are two sublevels of the ground 2S1=2 state of a Be

þ

ion. The third level c is a sublevel of the 2P3=2 excited state

which can decay only in to the level a. In the experiment,
the level b was populated with N ions and a resonant radio
frequency was applied to drive the atoms to the level a. The
nondestructive measurements of the number of particles
populating the level a are carried out by short laser pulses

FIG. 1 (color online). Two different setups consisting of a
sequence of m Mach-Zehnder interferometers. The phase shift
in each MZ interferometer is �=m. The input state is the product
jc aijc bi. (a) The MZ interferometers are sequentially con-
nected so that the output of each interferometer becomes the
input of the next one. (b) Only one output port becomes the input
of the next interferometer. The second output port remains
disconnected, while the corresponding input port of the next
MZ interferometer is injected with jc ai.
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resonant with the a ! c transition. The Zeno dynamics is
observed when the number of such measurements is suffi-
ciently large. If, on the other hand, the initial state is a
twin-Fock or a spin-squeezed state, the number of mea-
surements needed to observe the Zeno dynamics would be
quite larger. Atomic spin-squeezed and twin matter waves
have been recently created with dilute atomic Bose-
Einstein condensates [26].

Quantum Zeno and Cramer-Rao lower bound.—
Motivated by the previous interferometric examples, we
digress and briefly discuss the connection between distin-
guishability and the theory of parameter estimation. Let’s
consider the interval � as an unknown parameter which has
to be estimated from the results of m measurements on the

state e�i�
P

H k½�m
k¼0�ðk�Þ�ei�

P
H k . This evolved state is

indistinguishable from the initial state if and only if the
parameter � is smaller than the estimation noise arising
from the stochastic set of measurement results {yes, no}. A
fundamental lower bound for the noise is provided by the

Cramer-Rao relation ��CR ¼ 1=
ffiffiffiffiffiffiffiffi
mF

p
which provides a

natural condition for indistinguishability (and, therefore,
for Zeno dynamics) in terms of a signal-to-noise ratio
�=��CR � 1 [27].

Some final remarks for the case of pure states.—
Generally speaking, the value of the Fisher information
depends on our choice of the observable. The highest
value of the Fisher information, obtained with an optimal
choice of the measurement apparatus (the one that can
better discriminate neighboring states), is referred to in
the literature as the quantum Fisher [28]. For the one-
dimensional case Eq. (1), the quantum Fisher is given by
jhc ðtÞjc ðtþ �tÞij2 ¼ 1� Fqð�tÞ2 and is precisely Fq ¼
4�2H [29]. Therefore, the survival probability can be

written as: PðtÞ 	 e�ð�=2�tQCRÞ2 where �tQCR ¼ 1=
ffiffiffiffiffiffiffiffiffiffi
mFq

p

is the quantum Cramer-Rao bound. Notice also that the

Cramer-Rao can be written as an uncertainty relation that,
for pure states, is �tQCR�H � 1=2

ffiffiffiffi
m

p
. This relation has

of course a different physical meaning than a Heisenberg
uncertainty relation since �tQCR is the mean square fluc-

tuation of estimated parameters rather than of measure-
ment results of an Hermitian operators [30]. In particular,
such a parameter can be estimated with arbitrary precision
by just increasingm. The fact that the quantum Zeno effect
is related to a parameter-based uncertainty relation also
clarifies the important point (which occasionally raises
some controversy) that there are no intrinsic limits, in
principle, on the rate of measurements: the value �=m in
the previous interferometry examples can be arbitrarily
small.
Conclusions.—In the classical world, indistinguishabil-

ity is the consequence of ignorance, which can be solved
by collecting results of measurements. This is not always
the case in the quantum word. In the Zeno dynamics, the
projective measurements freeze indistinguishability.
There are different technologies which are based on

efficiently distinguished quantum states. Our results can
therefore be extended and applied in various contexts such
as, for instance, in quantum control theories, when search-
ing the optimal path to generate a target quantum state
[31], in the conditions for adiabatic approximations [32]
and applications in adiabatic quantum computation [33],
and in the estimation of the speed limits of quantum
computation [34].
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Rev. Lett. 107, 080504 (2011).

[25] R. J. Cook, Phys. Scr. T21, 49 (1988).
[26] C. Gross, T. Zibold, E. Nicklas, J. Estève, and M.K.
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