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We show that the Hamiltonian of a multiband spin-orbit coupled semiconductor nanowire with Zeeman

splitting and s-wave superconductivity is approximately chiral symmetric. The chiral symmetry becomes

exact when only one pair of confinement bands is occupied and the Zeeman splitting is parallel to the

nanowire. In this idealized case the Hamiltonian is in the BDI symmetry class of the topological

classification of band Hamiltonians, allowing an arbitrary integer number of zero-energy Majorana

fermion modes at each end. In the realistic case of multiband wires (Zeeman splitting still parallel to

the length) the chiral symmetry is approximate and results in multiple near-zero-energy end states with

increasing Zeeman splitting. The existence of such low energy end states implies the vanishing of the

minigap with increased Zeeman splitting which can only be restored by breaking the approximate chiral

symmetry by a second Zeeman field.
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Rashba spin-orbit (SO) coupled semiconductors in di-
mensions d ¼ 2, 1 with a Zeeman field and a proximity-
induced s-wave superconductivity have recently attracted a
lot of attention [1–17]. Under suitable external conditions
these systems can support Majorana fermion (MF) excita-
tions (defined by second quantized operators �y ¼ �)
whose statistics is non-Abelian. In d ¼ 2 the particle-
hole (p-h) symmetric Bogoliubov–de Gennes (BdG)
Hamiltonian of the Rashba coupled semiconductor with
s-wave superconductivity and a Zeeman field in the z
direction (semiconductor plane being xy) is in the topo-
logical class D [18,19] with an integer Z topological
invariant which counts the number of gapless chiral
Majorana modes on the boundary. From dimensional re-
duction, i.e., by putting one of the wave vectors (say ky) to

zero [20], the gapless boundary Majorana modes in d ¼ 2
reduce to zero-energy end Majorana modes in a d ¼ 1
nanowire. The dimensional reduction argument suggests
that the number of possible end Majorana modes in a SO
coupled nanowire should also in principle be an integer. In
this Letter, we first discuss an inherent chirality symmetry
of the nanowire Hamiltonian with only a single pair of
occupied confinement-induced bands (i.e., large confine-
ment energy) and use it to map the problem on the general
theoretical framework for chiral-symmetric Hamiltonians
[21,22]. Based on this we argue that the Hamiltonian for
the idealized case of a single-band (by ‘single band’ we
mean a single pair of spin-split subbands [13]) nanowire
with a proximity induced s-wave superconductivity and a
parallel Zeeman field is in the topological class BDI with a
Z invariant which gives the number of zero-energy
Majorana modes on a given end [18–22]. We discuss the
algebraic form of the Z invariant [21,22] and its relation
with the more frequently used Z2 invariant [23,24] which
gives only the parity of the number of end Majorana

modes. For realistic multiband nanowires we show that
the exact chiral symmetry of single-band wires is broken
by the interband Rashba couplings and thus, the real-
istic nanowires are not in the topological class BDI.
Nevertheless, the experimentally realistic interband
Rashba couplings increase the energies of the zero-energy
end states only slightly, resulting in multiple near-zero-
energy end states. Since the chiral symmetry is only
weakly broken by the interband Rashba couplings, we
call the multiband nanowires approximately chiral sym-
metric. We show that the approximate chiral symmetry of
the multiband wires results in multiple near-zero-energy
end states on a given end with increasing parallel Zeeman
field. The existence of such multiple low energy states on a
given end implies vanishing of the minigap above the
Majorana fermion end states which can only be restored
to experimentally realistic values by externally breaking
the approximate chiral symmetry by a second Zeeman
field.
The topological class of the SO coupled semiconductor

is analogous to that of a spinless px þ ipy superconductor.

In d ¼ 2 the spinless px þ ipy superconductor, with bro-

ken time reversal (TR) invariance (due to the presence of i
in the order parameter), is in the class D characterized by a
Z invariant [25,26]. It is also possible to define a Z2

invariant which only counts the parity of the number of
boundary Majorana modes [24]. Dimensional reduction
arguments suggest that the number of possible end MFs
in a d ¼ 1 spinless superconductor should also be an
integer and this has recently been shown explicitly [27].
Therefore, the Hamiltonian should be in the topological
class BDI with a Z invariant in d ¼ 1. Note, however, that
d ¼ 1Hamiltonians in the class BDI are supposed to be TR
invariant while the spinless px þ ipy superconductor

explicitly breaks TR symmetry in d ¼ 2. The key to
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this difference is that, in d ¼ 1, the Hamiltonian can be
made completely real [27] while it is necessarily complex
in d ¼ 2. Redefining the time-reversal operator only in
terms of the complex conjugation operator K, it follows
that in d ¼ 2 this symmetry is broken (class D) but it
remains intact in d ¼ 1 (class BDI). More generally, we
show below that the emergence of the reality condition in
d ¼ 1 changes the symmetry class of the spinless p-wave
superconductor as well as the single-band Rashba spin-
orbit coupled system from D in d ¼ 2 to BDI in d ¼ 1.
After discussing the Z invariant for the single-band Rashba
coupled BDI system using the framework for chiral-
symmetric Hamiltonians [18–22], we discuss the more
general experimentally realistic multiband Rashba coupled
wires and show how the approximate chiral symmetry
results in the vanishing of the minigap with increasing
Zeeman fields.

To understand the difference between complex and real
Hamiltonians let us start from the Hamiltonian of a spinless
px þ ipy superconductor in d ¼ 2,

H1ðkÞ ¼ ð�k ��Þ�z þ �xkx�x � �yky�y; (1)

where k is a two-dimensional wave vector,� is the chemi-
cal potential, and �x, �y are superconducting pair poten-

tials along the x, y directions, respectively. Here we have

used the p-h basis (cyk, c�k) and its Hermitian conjugate,

and the � matrices in Eq. (1) are defined in this basis.
Writing this Hamiltonian in terms of the Anderson pseu-

dospin vector [28] ~dðkÞ asH1ðkÞ ¼ ~dðkÞ: ~�, we see that for
a spinless px þ ipy superconductor in d ¼ 2 all three

components of ~d are nonzero. The group for the topologi-
cal invariant is then Z which is the relevant homotopy
group �2ðS2Þ of the mapping from the two-dimensional k
space to the 2-sphere of the three-component unit vector

d̂ ¼ ~d=j ~dj [25,26]. On the other hand, in d ¼ 1, since the
corresponding Hamiltonian can be made purely real [�x

drops out from Eq. (1) for the system along the y axis], the

vector ~d has only two components. Noting that the k space
now is also one-dimensional (1D), the topological invariant
must again be in Z (class BDI) since �1ðS1Þ ¼ Z. This
invariant is simply the winding number,

N ¼ 1

2�

Z 2�

0
d�ðkÞ; (2)

where �ðkÞ is the angle the unit vector d̂ makes with, say,
the z axis on the yz plane. It is clear that only with the
breakdown of the reality condition of the BdG Hamiltonian
can the symmetry class of the spinless p-wave supercon-
ductor change from BDI to D (which is characterized by a
Z2 invariant) even in d ¼ 1.

In d ¼ 2, 1 the 4� 4 BdG Hamiltonian H2ðkÞ of a
single-band Rashba coupled semiconductor with Zeeman
coupling and a proximity induced s-wave superconductiv-
ity is given by

H2ðkÞ ¼ ð�k ��Þ�z þ VZŜ � ��z þ �kx�y�z

� �ky�x þ�0�y�y; (3)

where we have used the 4-component p-h spinor (u"ðrÞ,
u#ðrÞ, v"ðrÞ, v#ðrÞ) (with quasiparticle operators given by

dy ¼ P
�½u�ðrÞcy�ðrÞ þ v�c�ðrÞ�), and the Pauli matrices

�x;y;z, �x;y;z act on the spin and particle-hole spaces,

respectively. In Eq. (3), the vector Ŝ is a suitably chosen

direction of the applied Zeeman spin splitting VZ [e.g., Ŝ ¼
ẑ in d ¼ 2 for k ¼ ðkx; kyÞ, Ŝ ¼ x̂ in d ¼ 1 for k ¼ kx], �

is the chemical potential, � is the Rashba SO coupling
constant, and �0 is an s-wave superconducting pair poten-
tial. It is clear that in d ¼ 2 the Hamiltonian cannot be
made real because of the complex Rashba term. In contrast,
in d ¼ 1 H2 can be made purely real, and one can define a
pseudo-TR operator in terms of K alone. Then, in d ¼ 1
H2 preserves both p-h as well as the new ‘time reversal’
symmetry and hence is in the class BDI characterized by a
Z invariant. Note, however, that in contrast to the case of a
spinless p-wave superconductor, the components of the
~d-vector in the present 4� 4 Hamiltonian are themselves
2� 2 matrices. More generally, the BdG Hamiltonian of a
topological superconductor system in d ¼ 1, despite being
real (thus preserving the chiral symmetry), can be a large

2N � 2N square matrix so that the components of the ~d
vector are N � N matrices.
Let us now show that in general real BdG Hamiltonians

such as the Hamiltonian for the single-band Rashba spin-
orbit coupled superconductor [Eq. (3)] in d ¼ 1, are chiral
symmetric; i.e., they can be unitarily transformed to an off-
diagonal matrix [20]. Since in the p-h space the matrixH in
Eq. (3) can be written as H ¼ H0�z þ i��y it can be made

purely off diagonal by a rotation in the p-h space by the

unitary transformation U ¼ e�ið�=4Þ�y . It follows that the
rotated Hamiltonian

UHðkÞUy ¼ 0 AðkÞ
ATð�kÞ 0

� �
(4)

is off diagonal and therefore chiral symmetric. Moreover,
the transformed Hamiltonian is symmetric with the matrix
A ¼ H0 þ � being real; i.e., it satisfies AðkÞ ¼ A�ð�kÞ.
The off-diagonal form of the transformed Hamiltonian is
a result of the chiral symmetry [18–20] defined as S ¼
K� (with � ¼ �xK in this basis), under which the
Hamiltonian is invariant.
We now review the procedure [21,22,29,30] for con-

structing the Z invariant associated with chiral-symmetric
Hamiltonians. The topological Z invariant associated with
chiral-symmetric Hamiltonians is obtained by writing the
Hamiltonian in k space as

UHðkÞUy ¼ 0 AðkÞ
ATð�kÞ 0

 !
; (5)
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where AðkÞ is the momentum space representation of A.
Since Det½UHðkÞUy� ¼ DetðAðkÞÞDet½ATð�kÞ�, DetðAðkÞÞ
can only vanish if HðkÞ has a vanishing determinant or
equivalently a zero eigenvalue. Therefore, Hamiltonians
HðkÞ, with a gap at zero energy, are characterized
by a complex function zðkÞ ¼ expði�ðkÞÞ ¼ DetðAðkÞÞ=
jDetðAðkÞÞj, of modulus jzðkÞj ¼ 1. For d ¼ 1, where the
wave vector k is periodic from k ¼ 0 to 2�, the existence
of the function zðkÞ leads to a natural association of a

winding number W with H, which is written as W ¼ �i
2� �R

k¼2�
k¼0

dzðkÞ
zðkÞ . Since the matrix A, from which AðkÞ was

derived, was real in Eq. (4) as a consequence of the
particle-hole symmetry of H,

DetðAðkÞÞ ¼ DetðAð�kÞÞ�: (6)

Therefore, the winding number W can be written as

W ¼ �i

�

Z k¼�

k¼0

dzðkÞ
zðkÞ : (7)

Even though the calculation ofW requires an integral over
the half of the Brillouin zone, in practice the value of the
integrand shows any significant variation only near k ¼ 0
for the spin-orbit coupled nanowire [31]. This justifies the
use of the (kp)-type Hamiltonian [Eq. (3)] to calculate the
integer invariant W defined over the entire Brillouin zone.

Now we derive a formula connecting the Z invariant W
and the Pfaffian Z2 invariant [23,24] more frequently used
for a semiconductor nanowire. The Pfaffian Z2 invariant is
defined for any BdG matrix HBdG with a particle-hole
symmetry of the form �xHBdG ¼ �H�

BdG�x (note that � ¼
K�x) where �x ¼ �Tx is the symmetric particle-hole trans-
formation matrix satisfying �x�

�
x ¼ 1. Then the matrix

HBdG�x is antisymmetric; i.e., ðHBdG�xÞT ¼ �xH
�
BdG ¼

�HBdG�x. This allows us to define a Pfaffian PfðHBdG�xÞ
associated with the BdG Hamiltonian as

Q ¼ sgn

�
PffHðk ¼ �Þ�xg
PffHðk ¼ 0Þ�xg

�
; (8)

where k ¼ 0, � are the particle-hole symmetric k points in
the Brillouin zone.

For chiral-symmetric matrices, the Pfaffian of HðkÞ at
the particle-hole symmetric k points k ¼ 0, � can be
simplified as

Pf½HðkÞ�x� ¼ Pf

�
Uy 0 AðkÞ

ATð�kÞ 0

 !
U�xU

TU�
�

¼ Pf

�
0 AðkÞ

�ATð�kÞ 0

 !�
¼ DetðAðkÞÞ; (9)

where we have used the fact that DetðUÞ ¼ 1. Computing
the Pfaffian invariant in Eq. (8) using the above result, we
obtain that the Z2 invariant for chiral-symmetric
Hamiltonians is given by

sign

�
DetfAðk ¼ �Þg
DetfAðk ¼ 0Þg

�
¼ zðk ¼ �Þ

zðk ¼ 0Þ ¼ ei�W ¼ ð�1ÞW:
(10)

The second pair of equalitites follows from the definition
of the winding numberW in Eq. (7). Therefore, the familiar
Z2 Pfaffian invariant of the d ¼ 1 systems is simply the
parity of the more general Z invariant of a chiral
Hamiltonian.
We now consider the case of a single-band SO coupled

semiconductor nanowire with a parallel Zeeman coupling
and a proximity-induced s-wave superconductivity. In this
case, from Eq. (3), we have, H0 ¼ ð�k ��Þ þ �fðkÞ�y þ
VZ�x and� ¼ i�0�y so that AðkÞ¼ð�k��Þþ�fðkÞ�yþ
VZ�xþ i�0�y. Here we have generalized the SO coupling

term to have a general wave-vector dependence with the
constraint fðk ! ��Þ ! 0. We find that

DetðAðkÞÞ ¼ ð�k ��Þ2 þ�2
0 � V2

Z � �2f2ðkÞ
þ 2i�0�fðkÞ (11)

has a winding numberW ¼ 1 whenever the Pfaffian of the
Hamiltonian ð�k ��Þ2 þ�2

0 � V2
Z � �2f2ðkÞ has a single

zero as k ranges from k ¼ 0 to �. This corresponds to the
regime where the Z2 Pfaffian invariant in Eq. (8) is non-
trivial. In the limit of small �, this corresponds to a single
band crossing the Fermi level at a pair of points �kF. By
considering the trajectory of DetðAðkÞÞ in Eq. (11) in the
complex plane as k changes from 0 to �, and noting that
DetðAðkÞÞ � 0 and DetðAðkÞÞ moves from a point on the
positive real axis to the negative real axis while crossing
the imaginary axis exactly once, it is clear the winding
number W ¼ �1 depending on the sign of fðkÞ when
Re½DetðAðkÞÞ� ¼ 0.
Now we consider a quasi-1D nanowire (lengths Lx �

Ly � Lz) with multiple occupied bands with a parallel
Zeeman field (i.e., in the x direction) and a proximity
induced s-wave superconductivity. For a wire of infinite
length, the BdG Hamiltonian of the multiband system has
the form,

HnmðkÞ ¼ ½�nmðkÞ ��	nm��z þ VZ	nm�x�z

þ �k	nm�y�z � i�yqnm�x þ �nm�y�y; (12)

where k ¼ kx; n, m label different confinement bands with
wave functions 
nðyÞ / sinðn�y=LyÞ; and the induced

superconducting pairing �nm contains nonvanishing inter-
band components. The interband Rashba coupling �y

comes with matrix elements qnm / h
nj@=@yj
mi which
couple transverse states with opposite parity. As we show
below a finite �y breaks the exact chirality symmetry of
~Hnm ¼ Hnmð�y ¼ 0Þ to only an approximate one for Hnm.

To discuss the chirality symmetry of the multiband
nanowire we first consider the Hamiltonian ~Hnm. It can
be seen by explicit construction that ~Hnm anticommutes
with a unitary operator S ¼ �x,
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f ~Hnm;Sg ¼ 0: (13)

Here, the chirality operator S ¼ �x with the p-h operator
� ¼ �xK. It is easy to check explicitly that ~Hnm com-
mutes with the complex conjugation operator K and anti-
commutes with the p-h transformation operator �, and
hence it anticommutes with the chirality operator S ¼
K� ¼ �x. The existence of all three symmetries—‘time
reversal,’ particle hole, and chirality—ensures that ~Hnm is
in the BDI symmetry class [18–20] characterized by an
integer invariantW. From Eq. (13) it follows that the large
square matrix Hamiltonian ~Hnm can be off diagonalized in
a basis in which the unitary operator S is diagonal:

U ~HnmðkÞUy ¼ 0 AðkÞ
ATð�kÞ 0

 !
: (14)

Defining the variable zðkÞ ¼ expði�ðkÞÞ ¼ DetðAðkÞÞ=
jDetðAðkÞÞj and following Eq. (7), we can now calculate
the invariant W which is an integer (W 2 Z) including
zero. The integer W gives the number of zero-energy
Majorana modes on any given end of the nanowire de-
scribed by the Hamiltonian ~Hnm. As has been shown in
detail in Ref. [31], on the�VZ planeW increases in integer
steps with increasing VZ (for fixed �), indicating quantum
phase transitions to phases with multiple Majorana modes
on a given end with increasing Zeeman coupling.

In a real quasi-1D nanowire with finite �y,Hnmð�y � 0Þ
does not anticommute with �x. Hence, the Hamiltonian
matrix is no longer off diagonalizable in the diagonal basis
of S and the number W can no longer be defined. A finite
�y thus breaks the chirality symmetry. Nevertheless, since

�y ¼ �� 0:1 eV �A makes only a minute contribution

�10�2Eqp (Eqp � 1 K is the expected bulk quasiparticle

gap in InAs wires in proximity to Nb) to the energies of the
end states, the integer invariant for ~Hnm (i.e., with �y ¼ 0)

can still be used to describe the phase diagram of
Hnmð�y ¼ �Þ with the integer W now indicating the num-

ber of near-zero-energy end states on a given end. The
different topological phases of the full Hamiltonian
Hnmð�y ¼ �Þ characterized by different numbers of near-

zero-energy end states can be characterized by different
values of the integer W calculated for the corresponding
reduced Hamiltonian Hnmð�y ¼ 0Þ. It is also important to

note [31] that the multiple near-zero-energy end states on a
given end of a realistic nanowire are robust to all perturba-
tions including disorder as long as the chirality symmetry
ofHnmð�y ¼ 0Þ is unbroken. The exact chiral symmetry of

Hnmð�y¼0Þ [which is only approximate forHnmð�y¼�Þ]
thus leads to an effective vanishing of the minimum topo-
logical gap (minigap) in realistic quasi-1D nanowires with
increasing VZ. It then becomes difficult (although not
impossible [32]) to probe the physics of isolated MFs
with increasing VZ at experimentally accessible tempera-
tures [32,33].

The small minigap problem of quasi-1D multiband
nanowires can be resolved by applying an additional trans-
verse Zeeman field Vy

Z ¼ g��BBy=2 in addition to the

longitudinal one needed to create the topological super-
conductor state itself. With this term, the BdG Hamiltonian
of the nanowire becomes,

H0
nmðkÞ ¼ HnmðkÞ þ Vy

Z	nm�y: (15)

In H0
nmðkÞ the terms with coupling constants Vy

Z and �y

cannot be made fully off diagonal even in the basis in
which S ¼ �x is diagonal. It is not possible to construct
any unitary symmetry operator with the available discrete
symmetries (time reversal, particle hole, complex conju-
gation, etc.) that anticommutes withH0

nm. It follows that V
y
Z

externally breaks the chiral symmetry hidden in ~Hnm. It
can be shown that [31], with no Vy

Z if the number of near-
zero modes is even, the transverse field creates a gap for all
of them resulting in no Majorana edge mode. If the number
of zero modes is odd for Vy

Z ¼ 0, the transverse field opens
a gap for all of them except one, resulting in only one
nondegenerate Majorana end mode at each end. The en-
ergy gap above the nondegenerate Majorana mode is the
minigap which is now tunable by the external transverse
Zeeman field breaking the approximate chirality sym-
metry of the multiband wire. As shown in Ref. [31] the
minigap can be lifted to experimental temperature regimes
(� 0:1Eqp ¼ 100 mK) by the external breaking of the

chiral symmetry of Hnmð�y ¼ 0Þ with a reasonable second
Zeeman splitting orthogonal to the wire.
In summary, we show that the Hamiltonian of a 1D

single-band SO coupled semiconductor nanowire with
s-wave superconductivity and a parallel Zeeman field is
chiral symmetric and in the topological class BDI with an
integerZ topological invariant. The familiar Z2 invariant of
this system only gives the parity of the integer invariant.
For realistic quasi-1D multiband nanowires the chiral sym-
metry is only approximate, nevertheless it results in mul-
tiple near-zero-energy end states on any given end with
increasing values of the parallel Zeeman splitting. The
results derived here have important implications for the
topological minigap and robustness of MF modes in semi-
conductor nanowires [31]. In particular the approximate
chiral symmetry implies that the minigap of a realistic
multiband wire almost vanishes with the increase of the
parallel Zeeman field and can only be restored to experi-
mentally accessible values by a second Zeeman field or-
thogonal to the wire which breaks the approximate chiral
symmetry. The results here have also been recently shown
to be important for Majorana flat bands in (p� ip) super-
conductors [34] and edge MF modes in semiconductor
wires with long SO coupling lengths [35,36].
We thank S. Chakravarty for enlightening discussions.

S. T. is supported by DARPA-MTO (FA9550-10-1-0497),
and NSF (PHY-1104527). J. D. S. thanks the Harvard
Quantum Optics Center for support.

PRL 109, 150408 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

12 OCTOBER 2012

150408-4



[1] J. D. Sau, R.M. Lutchyn, S. Tewari, and S. Das Sarma,
Phys. Rev. Lett. 104, 040502 (2010).

[2] S. Tewari, J. D. Sau, and S. Das Sarma, Ann. Phys. (N.Y.)
325, 219 (2010).

[3] J. Alicea, Phys. Rev. B 81, 125318 (2010).
[4] J. D. Sau, S. Tewari, R. Lutchyn, T. Stanescu, and S. Das

Sarma, Phys. Rev. B 82, 214509 (2010).
[5] R.M. Lutchyn, J. D. Sau, and S. Das Sarma, Phys. Rev.

Lett. 105, 077001 (2010).
[6] Y. Oreg, G. Refael, and F. von Oppen, Phys. Rev. Lett.

105, 177002 (2010).
[7] R.M. Lutchyn, T.D. Stanescu, and S. Das Sarma, Phys.

Rev. Lett. 106, 127001 (2011).
[8] J. Alicea, Y. Oreg, G. Refael, F. von Oppen, and M. P. A.

Fisher, Nature Phys. 7, 412 (2011).
[9] F. Hassler, A. R. Akhmerov, C.-Y Hou, and C.W. J.

Beenakker, New J. Phys. 12, 125002 (2010).
[10] S. Tewari, T. Stanescu, J. D. Sau, and S. Das Sarma, New

J. Phys. 13, 065004 (2011).
[11] L. Mao, J. Shi, Q. Niu, and C.W. Zhang, Phys. Rev. Lett.

106, 157003 (2011).
[12] L. Mao, M. Gong, E. Dumitrescu, S. Tewari, and C.W.

Zhang, Phys. Rev. Lett. 108, 177001 (2012).
[13] T.D. Stanescu, R.M. Lutchyn, and S. Das Sarma, Phys.

Rev. B 84, 144522 (2011).
[14] C. Qu, Y. Zhang, L. Mao, and C.W. Zhang,

arXiv:1109.4108.
[15] R.M. Lutchyn, T.D. Stanescu, and S. Das Sarma, Phys.

Rev. B 85, 140513(R) (2012).
[16] J. D. Sau, S. Tewari, and S. Das Sarma, arXiv:1111.2054.
[17] B. van Heck, A. R. Akhmerov, F. Hassler, M. Burrello, and

C.W. J. Beenakker, arXiv:1111.6001.
[18] A. P. Schnyder, S. Ryu, A. Furusaki, and A.W.W. Ludwig,

Phys. Rev. B 78, 195125 (2008); A. P. Schnyder, S. Ryu,

A. Furusaki, and A.W.W. Ludwig, AIP Conf. Proc. 1134,
10 (2009).

[19] A. Yu Kitaev, AIP Conf. Proc. 1134, 22 (2009).
[20] S. Ryu, A. Schnyder, A. Furusaki, and A.W.W. Ludwig,

New J. Phys. 12, 065010 (2010).
[21] S. Ryu and Y. Hatsugai, Phys. Rev. Lett. 89, 077002

(2002).
[22] J. Zak, Phys. Rev. Lett. 62, 2747 (1989).
[23] A. Y. Kitaev, Phys. Usp. 44, 131 (2001).
[24] P. Ghosh, J. D. Sau, S. Tewari, and S. Das Sarma, Phys.

Rev. B 82, 184525 (2010).
[25] G. E. Volovik, Zh. Eksp. Teor. Fiz. 94, 123 (1988) [Sov.

Phys. JETP 67, 1804 (1988)].
[26] N. Read and D. Green, Phys. Rev. B 61, 10267

(2000).
[27] Y. Niu, S.-B. Chung, C.-H. Hsu, I. Mandal, S. Raghu, and

S. Chakravarty, Phys. Rev. B 85, 035110 (2012).
[28] P.W. Anderson, Phys. Rev. B 110, 827 (1958).
[29] X.-L. Qi, T. L. Hughes, and S.-C. Zhang, Phys. Rev. B 78,

195424 (2008).
[30] G. E. Volovik, Universe in a Helium Droplet (Oxford

University Press, New York, 2003).
[31] S. Tewari, T. D. Stanescu, J. D. Sau, and S. Das Sarma,

Phys. Rev. B 86, 024504 (2012).
[32] A. R. Akhmerov, Phys. Rev. B 82, 020509

(2010).
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