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We propose a scheme allowing us to observe the evolution of a quantum system in the semiclassical

regime along the paths generated by the propagator. The scheme relies on performing consecutive weak

measurements of the position. We show how ‘‘weak trajectories’’ can be extracted from the pointers of a

series of devices having weakly interacted with the system. The properties of these weak trajectories are

investigated and illustrated in the case of a time-dependent model system.
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In classical physics, the evolution of a physical system is
given in terms of trajectories. Instead, quantum mechanics
forbids a fundamental description based on trajectories.
Nevertheless, the Feynman path integral approach gives a
sum over paths formulation of the evolution of a quantum
system, and when the actions are large relative to "—the
semiclassical regime–, the wave function evolves essen-
tially along classical paths, those of the corresponding
classical system [1]. Of course, this does not mean that a
quantum object is a localized particle moving on a definite
path. But trajectories may remain significant in quantum
systems: the large scale properties, experimentally ob-
served in many systems [1,2], display the signatures of
the underlying classical dynamics.

In this work, we aim to go further by proposing a scheme
allowing us to observe the evolution of a quantum system
in the semiclassical regime along the trajectories of the
corresponding classical system. The scheme relies on per-
forming consecutive weak measurements (WM).WM [3,4]
are characterized by a very weak coupling between the
system and the measurement apparatus. Thus measuring

weakly an observable Â results in leaving the former
essentially unperturbed while the latter picks up on average
a limited amount of information encapsulated in the weak
value (WV)

hÂiW ¼ h�jÂjc i
h�jc i ; (1)

jc i is the initial (preselected) state and h�j is the final
(postselected) state obtained by performing a standard

strong measurement after having measured Â weakly.
WM are receiving increased attention, either as a technique
for signal amplification [5] or as a tool to investigate
fundamental problems, from a theoretical standpoint but
also experimentally [6]. In particular, in a beautiful recent
experiment [7] nonclassical ’’average trajectories’’ (AT)
for photons deduced indirectly from the WM of momen-
tum have been observed. In our scheme we introduce
instead weak trajectories (WT) by measuring directly the

position of a quantum system interacting weakly with a set
of meters. We will see that in the semiclassical regime the
only WT compatible with the positions of the pointers are
the classical paths.
Let jc ðtiÞi be the initial state of a dynamical system

whose evolution is governed by a (possibly time-
dependent) Hamiltonian HðtÞ. Let us introduce a meter
consisting of a particle positioned at R0

�. Its spatial
wave function hR�j��i, assumed to be tightly localized
around R0

� acts as pointer. For convenience the wave

function can be taken to be a Gaussian, hR�j��i ¼
ð2=��2Þ1=2e�ðR��R0

�Þ2=�2
(we work from now on in a 2D

configuration space and use atomic units throughout). The
local coupling between the meter and the system is as-
sumed to take place during a small time interval �,
triggered when the system and pointer wave functions
overlap. The time-integrated interaction is taken as I� ¼
gr �R��ðð4�Þ2 � jr�R�j2Þ, where g is the effective cou-
pling strength and the last term is a unit-step function
accounting for the short range character of the interaction
(this term will be implicit in the rest of the Letter). Assume
now we have a set of meters � ¼ 1; :::; n positioned at R0

�.
Let t� denote the mean interaction time of the �th pointer
with the system. The initial state of the system and meters
j�ðtiÞi ¼ jc ðtiÞi

Q
n
�¼1 j��i evolves at time tf to [8]

j�ðtfÞi ¼ Uðtf; tnÞe�iInUðtn; tn�1Þ:::e�iI1Uðt1; tiÞj�ðtiÞi;
(2)

where Uðtkþ1; tkÞ denotes the unitary self evolution of the
system between two interactions; k relabels the meters
according to the order in which they interact with the
system.
At time tf a standard projective measurement is made in

order to postselect the system to a desired final state
j�ðtfÞi. Expanding each Ik in Eq. (2) to first order in the

coupling g leads to
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Yn
k¼1

hRkjh�ðtfÞj�ðtfÞi ’ h�ðtfÞjc ðtfÞi

� Yn
k¼1

exp½�ighrðtkÞiW �Rk��kðRk;R
0
kÞ; (3)

where hrðtkÞiW is the weak value [Eq. (1)] given here by

hrðtkÞiW � h�ðtkÞjrjc ðtkÞi
h�ðtkÞjc ðtkÞi (4)

with r ¼ xx̂þ yŷ. Equations (3) and (4) indicate that as a
result of the interaction that took place at tk, each meter
wave function�kðRk;R

0
kÞ will incur a phase shift given by

the WV hrðtkÞiW . As in the standard WM scenario [3], this
phase shift appears as a shift in the momentum space wave
function of each pointer. Since Eq. (3) holds provided g
and � are very small, the momentum space wave functions
will be broad, meaning a high number of events must be
recorded in order to observe each shift.

The structure of hrðtkÞiW deserves a special comment.
Each hrðtkÞiW is defined at t ¼ tk with an effective prese-
lected state jc ðtkÞi ¼ Uðtk; tiÞjc ðtiÞi being the initial state
propagated forward in time and an effective postselected
state h�ðtkÞj ¼ h�ðtfÞjUðtf; tkÞ being the postselected state

evolved backward in time; this property illustrates the
close relation between WM and time-symmetric formula-
tions of quantum mechanics [4]. Note that contrary to the
usual definition of weak values, the effective pre and post-
selected states defining hrðtkÞiW cannot be chosen: only the
initial and the final states can be freely set. AWVat some
intermediate time tk reflects the interaction Ik with the kth
meter given the unitary evolution of the preselected and
postselected states of the system. We can therefore envis-
age the set ftk; hrðtkÞiWg as defining a weak trajectory
of the system evolving from an initial state to a final
postselected state as recorded by the pointers positioned
at R0

k, k ¼ 1; :::; n.
For an arbitrary quantum system a WT will typically

reflect the space-time correlation between the forward
evolution of the preselected state and the backward evolu-
tion of the postselected state at the positions R0

k of the

weakly interacting meters. Although obtaining this type of
information is certainly of interest in general quantum
systems, the notion of weak trajectories is particularly
suited to investigate the evolution of a quantum system in
the semiclassical regime. In this regime a typical wave
function evolves according to the asymptotic form of the
path integral propagator [9],

c ðr; tÞ ¼
Z

dr0
�X

cl

1

ð2i�"Þ
��������det

@2Sclðr; r0; tÞ
@r@r0

��������
1=2

� exp½iSclðr; r0; tÞ="� i�cl�
�
c ðr0; 0Þ; (5)

where cl runs on the classical trajectories connecting r0 to r
in time t (from now on we set ti ¼ 0) and the term between

the large parentheses is the semiclassical propagator ob-
tained from the asymptotics (Scl � ") of the path integral
form of the evolution operator Uðt; 0Þ. Scl is the classical
action and�cl the topological index of each path. Working
out the full semiclassical propagation is often a formidable
task, especially as the number of trajectories proliferate in
the regimes where the semiclassical approximation holds.
However, if the initial state is well localized, the semiclas-
sical propagation can be simplified by linearizing the ac-
tion around an initial and a final reference point linked in
time t by a central classical trajectory, the guiding trajec-
tory [10]. Linearization is particularly relevant if c ðr0; 0Þ is
chosen to be a localized Gaussian

c r0;p0
ðr0; 0Þ ¼

�
2

��2

�
1=2

e�ðr0�r0Þ2=�2
eip0�ðr0�r0Þ=": (6)

The initial reference point is the maximum of the
Gaussian, the linearized action in Eq. (5) is a quadratic
form, whereas the determinant prefactor becomes a purely
time-dependent term that can be written in terms of the
stability matrix of the guiding trajectory. This linearized
information along the central reference trajectory effec-
tively replaces the sum over cl.
The integral (5) can then be performed exactly: the result

(often known as the thawed Gaussian approximation) is of
the form [10]

c r0;p0
ðr; tÞ ¼ Tr½AðtÞ�e�ðr�qðtÞÞ�½MðtÞþiNðtÞ��ðr�qðtÞÞ

� eipðtÞ�ðr�qðtÞÞ="eiSclðqðtÞ;r0;tÞ="; (7)

where ðqðtÞ;pðtÞÞ are the phase-space coordinates of the
guiding classical trajectory with initial conditions (r0, p0)
and A, M and N are time-dependent matrices depending
solely on the stability elements of the guiding trajectory.
The advantage of working in the linearized regime is that
by picking a preselected state of the form

hrjc ðtiÞi ¼
X
j

cjc r0;pj
ðr; tiÞ; (8)

i.e., a superposition of Gaussians (6) launched in different
directions pj, one is dealing conceptually with the type of

problem defined by the semiclassical propagation (5) with
a simplified and perfectly controlled dynamics. The evo-
lution operator Uðt1; tiÞ of Eq. (2) propagates each term of
Eq. (8) along the relevant guiding trajectory yielding at t1
the superposition of evolved states

P
jcjc r0;pj

ðr; t1Þ, each
state being given by Eq. (7) (recall that q, p, and the
matrices A, M, and N explicitly depend on j).
The postselected state will also be taken to be a Gaussian

of the type (6) localized in the vicinity of a chosen point rf
at time tf

�rf;pf
ðr; tfÞ ¼

�
2

��2
f

�
1=2

e�ðr�rfÞ2=�2
feipf�ðr�rfÞ=": (9)
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In the linearized approximation, finding the backward
propagated state is tantamount to obtaining the unique
solution of the form (7) such that c rðt1Þ;pðt1Þðr; tfÞ ¼
�rf;pf

ðr; tfÞ: this gives a wave function centered on a

time-reversed classical trajectory having boundary condi-
tions (rf, pf) at t ¼ tf and position qfðtkÞ at t ¼ tk.

Assume the meters lie at positions R0
k where the overlap

between the different branches of the system wave function
(8) is negligible. The weak values (4) can then be computed
exactly: if c r0;pj

ðr; tkÞ (for all j) or �rf;pf
ðr; tkÞ vanish in

the vicinity of R0
k the meter does not move: there is no

weak trajectory in the neighborhood of this point.
Otherwise, �rf;pf

ðr; tkÞ overlaps at most with one branch,

say c r0;pJ
; denoting the distance between the maxima of

the wave packet and of the postselected state at t ¼ tk by
�k ¼ qJðtkÞ � qfðtkÞ, the WV hrðtkÞiW ¼ hxðtkÞiW x̂þ
hyðtkÞiW ŷ takes the form

hxðtkÞiW ¼½qJðtkÞ � x̂þax�k � x̂þbxðpJðtkÞ�pfðtkÞÞ � x̂�
þ i½gxðtkÞ�k � x̂þhxðpJðtkÞ�pfðtkÞÞ � x̂�; (10)

and analog expressions for hyðtkÞiW . a, b, g, and h are time-
dependent functions whose explicit forms are cumbersome
though straightforward to evaluate.

The structure of Eq. (10) emphasizes the special role of
the postselected state with (rf, pf) chosen such that the

backward evolved trajectory simply retraces the guiding
trajectory qJðtÞ. For this special choice �k ¼ 0 and
pJðtkÞ ¼ pfðtkÞ for any value of tk. If n meters happen to

be in regions where � and c J overlap each of these meters
will record hrðtkÞiW ¼ qJðtkÞ, i.e., the position of the
underlying classical trajectory. The WT ftk; hrðtkÞiWg thus
corresponds to the guiding trajectory of the linearized
Feynman propagator. For any other choice of postselection
hrðtkÞiW (where defined) will yield a complex number, with
the real part indicating a registered position that will be
markedly different from the average position of the wave
packet. The imaginary part of Eq. (10) does not inform on
the value of the weakly measured observable (as is the rule
for any WV) but is related to the average backaction
induced on the weak meter by the postselection [11].

For the purpose of illustration—and to avoid spurious
effects due to the quality of the linearized approximation—
we will take a 2D time-dependent linear oscillator
(TDLO). The linearized propagator for the TDLO is quan-
tum mechanically exact, while the varying amplitudes
capture many features of semiclassical systems with
more involved dynamics. The TDLO is often employed
to model diverse systems, like ions in a trap [12]. The
Hamiltonian for the system is H ¼ ðP2

x þ P2
yÞ=2mþ

mVxðtÞx2 þmVyðtÞy2, where for definiteness we choose

ViðtÞ ¼ 	i � 
i cosð2!itÞ (i ¼ x; y; 	, 
 and ! are con-
stants). The wave function (7) is obtained directly by
employing standard path integral techniques [9]; the clas-
sical trajectories can be found in closed form from the

solutions of Ermakov systems [13]. The preselected state
(8) is taken as the superposition of 3 Gaussians at the origin
with mean momenta as shown in Fig. 1(a). The maximum
of each wave packet then evolves by following the guiding
trajectory, I, II, or III shown in Fig. 1.
Let us first set the postselected state (9) with rf ¼ qIðtfÞ

and pf ¼ pIðtfÞ and let us position the metersDk as shown

in Fig. 2(a). The backward evolution of j�ðtfÞi simply

retraces trajectory I backwards. Therefore, the pointer in
D3 displays according to Eq. (10) the position qIðt3Þ while
D2 and D1 do not move at all (no overlap with j�ðtÞi at
any t). One concludes that the particle went throughD3 but
not through D1 and D2. If instead of D1 and D2 other
meters D0

1 and D0
2 positioned as shown in Fig. 3(a) are

employed, then these pointers display, respectively, the
WV qIðt1Þ and qIðt2Þ: the particle went through D0

1, D
0
2,

andD3. Hence, one concludes (possibly by inserting addi-
tional devices) that the particle took the WT defined by the
classical trajectory I. Note that according to Eq. (10) there
is no quantum state of the form (9) that can yield a WT
going through D1, D2, and D3. This is due to the fact,
implied by the propagator (5), that there does not exist a
wave packet arriving in the neighborhood of rf at time tf
that would have previously visited the neighborhoods of
D1, D2, and D3.

I

II 

III 

(a) (b) 

(c) (d) 

x

y

x

y

x

y

x

y

FIG. 1 (color online). Time evolution of the wave function
initially (ti ¼ 0) given by Eq. (8) with r0 ¼ 0 and the initial
mean momenta pj, j ¼ I, II, III taken as indicated by the arrows

in panel (a). The reference classical trajectories I, II and III are
shown, respectively, in black, dashed blue, and orange. (a) The
wave function at t1 ¼ 0:7, (b) at t2 ¼ 2, (c) at t3 ¼ 3:15 (after
the wave packets cross the origin), and (d) at tf ¼ 3:65, the time

at which postselection is made.
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The last remark highlights the incompatibility between
the weak trajectories defined here by consecutive WM of
the position and the average trajectories defined by a WM
of the momentum immediately postselected to a given
position. By repeating these weak momentum measure-
ments for different postselected positions, a velocity field
is obtained. The AT are precisely the trajectories built on
this velocity field. They have been experimentally ob-
served recently for photons in a double slit setup [7]. It
was previously known [14] that their dynamics is governed
by the law of motion of the de Broglie–Bohm theory [15],
i.e., by the probability flow, whereas the WT are generated
by the semiclassical propagator (5). The mismatch [16]
between de Broglie–Bohm and classical trajectories in
semiclassical systems hinges on the fact that when wave
packets interfere, the overall mean velocity field differs
from the group velocity of each individual wave packet.

The mismatch is illustrated here in Fig. 2(b): we have
computed numerically [8] several AT arriving in the neigh-
borhood of rf ¼ qIðtfÞ. These AT go indeed through D1,

D2, andD3: starting near the origin, they first move in the
vicinity of the guiding trajectory III, then travel along
trajectory II and, thereafter, jump so as to move along
trajectory I.
Finally, consider choosing postselection at tf ¼ tO when

trajectories I, II, and III first return to the origin, with the
postselected state chosen as the superposition �Oðr; tOÞ ¼P

j�rf¼0;pOj
ðr; tOÞ, with �rf¼0;pOj

given by Eq. (9) and

pOj ¼ pjðtOÞ, j ¼ I, II, III. Several pointers are posi-

tioned as shown in Fig. 3(b). By construction the backward
evolution of �O yields a superposition of wave packets
retracing trajectories I, II, and III respectively. Therefore,
all the pointers will display a WV consistent with their
position along one of the three trajectories, indicating the
particle was there. This is an experimentally realizable way
to catch the essence of the path integral approach in the
semiclassical regime: weakly interacting meters indicate
the ‘‘particle’’ takes simultaneously all the available clas-
sical paths. In contrast a strong projective measurement
would of course yield a definite outcome on only one of
the paths.
To sum up, we have definedweak trajectories allowing us

to observe the paths taken by a quantum system in the
semiclassical regime by direct weak measurements of the
position. A consequence worth exploring concerns the pos-
sibility of employing this scheme to reconstruct the un-
known propagator of a semiclassical system from the
observed WTobtained from a grid of weak detectors while
filtering postselected states. Possible experimental realiza-
tions could be considered in systems in which wave packets
with a controlled dynamics can be engineered [17]. The
present setup may also be used in designing pre-
postselected quantum paradoxes containing dynamical
ingredients.
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FIG. 3 (color online). (a) The postselected wave function (the
same as displayed in Fig. 2) is shown with the meters D0

1, D
0
2,

andD3. Each of these pointers indicates a weak value qIðtkÞ: the
evolution of the system along the reference trajectory I has been
measured weakly. (b) Postselection now takes places at tO ¼
2:84 when the wave packets return simultaneously to the origin.
The postselected state (defined in the text) is plotted along with
the pointers positioned along the reference trajectories I, II, III.
All the meters yield weak values in agreement with their position
along the relevant classical trajectory: the semiclassical sum over
paths formulation has thus been measured weakly.
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FIG. 2 (color online). (a) The postselected wave function, a
Gaussian localized on the guiding trajectory I, is shown, along
with the positions of the meters D1;2;3. Only the pointer D3 is

affected, while D1;2 remain still: there is no WT joining the

corresponding positions. (b) The average trajectories obtained
from WM of the momentum are plotted in solid black: 9
trajectories having their final positions on and near the maximum
of the postselected state are shown, along with the reference
trajectories (in faded colors).
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