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We derive a tight bound between the quality of estimating a quantum state by measurement and the

success probability of undoing the measurement in arbitrary dimensional systems, which completely

describes the tradeoff relation between the information gain and reversibility. In this formulation, it is

clearly shown that the information extracted from a weak measurement is erased through the reversing

process. Our result broadens the information-theoretic perspective on quantum measurement as well as

provides a standard tool to characterize weak measurements and reversals.
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Since Heisenberg discussed the �-ray microscope ge-
danken experiment [1], the disturbance induced by mea-
surement has become one of the fundamental issues in
quantum mechanics. A heuristic statement, ‘the more in-
formation is obtained from a quantum system, the more its
state is disturbed by measurement’ is widely believed
nowadays, and numerous efforts have been devoted to
proving this in a quantitative manner [2–6].

However, the general belief in the irreversibility of quan-
tum measurement has been shown to be not always true in
the sense that the input state can be retrieved with a nonzero
success probability by reversing operations on the post-
measurement state [7,8]. This is because the quantum state
is not fully perturbed by measurement when the interaction
between the system and measurement apparatus is weak.
The measurement that induces a partial collapse of a quan-
tum state is called a ‘‘weak measurement,’’and its reversing
process has been studied theoretically [9–11] and realized
experimentally [12,13]. It has attracted much attention due
to its potential applications in quantum information
processing [14,15].

In an information-theoretic point of view, reversibility
can be understood as a degree of preserved information in
the measurement process, and thus should be quantitatively
related to the extracted one [16]. In fact, the information
that is not extracted from a measurement is transferred to
the remainder of the whole Hilbert space describing the
measurement process (see the Appendix). Even after some
information is extracted through a measurement, its state
can be retrieved with a probability equal to the degree of
ignorance of the state [8]. This concept was also proved in
another context as the ‘no-hiding theorem’ of information
[17]. In this sense, the extracted information should be
more tightly related to the possibility of undoing the mea-
surement [4] rather than the closeness between input and
post-measurement states as used in previous works [2].
Recently, an entropic tradeoff relation was derived based
on the concept of information conservation in the measure-
ment process [18], and a degree of information gain was

investigated by changing the reversibility in a single mea-
surement outcome level [19]. However, a clear and direct
quantitative relation between information gain and revers-
ibility in quantum measurement has so far been missing.
In this Letter, we derive a tight bound between the

amount of information gain and reversibility in arbitrary
d-level systems, which are quantified by the average esti-
mation fidelity [2] and the reversal probability [8], respec-
tively. In particular, it shows a sharp tradeoff relation
between them with a monotonic equation for qubit
(2-level) systems. To our knowledge, this is the first direct
and quantitative link between information gain and revers-
ibility. Moreover, since both the estimation fidelity
[5,20,21] and reversal probability [8,11–13] are measur-
able quantities, its demonstration is experimentally fea-
sible. Our result provides a fundamental insight on the
quantummeasurement as well as a useful tool to character-
ize reversals of weak measurements potentially used in
quantum information processing [14,15].
Quantum measurement—An ideal measurement can be

described by a set of operators fÂrjr ¼ 1; . . . ; Ng, satisfy-
ing the completeness relation

XN
r¼1

Ây
r Âr ¼ 1̂; (1)

where the index r indicates the obtained classical informa-
tion. A measurement performed on a system transforms its
input state jc i to

jc ri ¼ Ârjc iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðr; jc iÞp ; (2)

which is the post-measurement state, where pðr; jc iÞ ¼
hc jÂy

r Ârjc i is the probability that the outcome is r.

A measurement operator Âr can be written by the

singular-value decomposition: Âr ¼ V̂rD̂rÛr, where Ûr

and V̂r are unitary operators, and D̂r is a diagonal

matrix with non-negative entries. We assume V̂r ¼ 1
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without loss of generality, and Ûr can be written by Ûr ¼Pd�1
i¼0 jvr

i ihwr
i j with two orthonormal bases fjvr

i iji ¼
0; . . . ; d� 1g and fjwr

i iji ¼ 0; . . . ; d� 1g for d-level mea-
surements. The diagonal matrix can be also written by

D̂r ¼
P

d�1
i¼0 �r

i jvr
i ihvr

i j, with non-negative diagonal ele-

ments �r
i (i.e., singular values) put in decreasing order

such that �r
0 � �r

1 � . . . � �r
d�1. Thus, each measurement

operator can be represented by

Â r ¼
Xd�1

i¼0

�r
i jvr

i ihwr
i j; (3)

and due to the completeness relation in Eq. (1) their
singular values �r

i satisfy

XN
r¼1

Xd�1

i¼0

ð�r
i Þ2 ¼ d: (4)

Information gain—In order to quantify the obtained infor-
mation through a measurement, we employ the estimation
fidelity [2]. When the measured outcome is r, one can
make a guess on the input state jc i and select a stategjc ri. The quality of the guess can be quantified with the

help of overlap between them jhc gjc rij2. Then, the mean

estimation fidelity is obtained by averaging jhc gjc rij2 over
all possible measurement outcomes r and input states jc i:

G ¼
Z

dc
XN
r¼1

pðr; jc iÞjhfc rjc ij2; (5)

which gives different values depending on the guess strat-
egy. We reformulate it by

XN
r¼1

Z
dc hc j � hc jðÂy

r Âr � gjc ri ghc rjÞjc i � jc i; (6)

and use the Schur’s lemma [22] that leads to the identity,

Z
G
dg½ÛyðgÞ � ÛyðgÞ�Ô½ÛðgÞ � ÛðgÞ�

¼ �11̂ � 1̂þ �2Ŝ;

�1 ¼ d2TrðÔÞ � dTrðÔ ŜÞ
d2ðd2 � 1Þ ;

�2 ¼ d2TrðÔ ŜÞ � dTrðÔÞ
d2ðd2 � 1Þ ;

for any operator Ô acting on the d� d Hilbert space. Here
dg is Haar invariant measure on the d-dimensional unitary

group G ¼ UðdÞ such that
R
G dg ¼ 1, ÛðgÞ is an irreduc-

ible unitary representation of g 2 G, and Ŝ is a swap

operator defined as Ŝjii � jji ¼ jji � jii. A simpler form
is then obtained as

1

dðdþ 1Þ
�
dþ XN

r¼1

Tr½Ây
r Âr � gjc ri ghc rj Ŝ�

�
; (7)

and by using Eq. (3), its second term is rewritten by

XN
r¼1

Xd�1

i¼0

ð�r
i Þ2jghc rjwr

i ij2; (8)

which gives a maximum value when the estimated stategjc ri is equivalent to jwr
0i. Then, we define the measure of

information gain as the maximal value of the mean esti-
mation fidelity,

Gmax ¼ 1

dðdþ 1Þ
�
dþ XN

r¼1

ð�r
0Þ2

�
; (9)

which is a function of the maximal singular value �r
0 of

the measurement operators. Note that it is scaled in the
range 1=d � Gmax � 2=ðdþ 1Þ, where the upper bound
2=ðdþ 1Þ is reachable by a von Neumann measurement
and the lower bound 1=d is obtained by a unitary measure-
ment or equivalently by a random guess. The result in
Eq. (9) is valid for arbitrary input states �̂ as a mixed state
degrades the estimation fidelity by averaging over the input
probability so that its maximum is always obtained in the
space of pure states.

Reversibility—A reversing operator R̂ðrÞ can be defined

for a physically reversible measurement Âr [8] to recover

the input state as R̂ðrÞjc ri / jc i. Thus, a subsequent mea-

surement of reversing operator R̂ðrÞ after the first measure-

ment Âr leads to a successful reversal, independently on
the input state jc i, as

R̂ ðrÞÂrjc i ¼ �rjc i; (10)

where �r is a nonzero complex number.

Since R̂ðrÞ can be regarded as an element of a complete

measurement set, 1� R̂ðrÞyR̂ðrÞ is positive, semidefinite,
and equivalently,

sup
j�i

h�jR̂ðrÞyR̂ðrÞj�i � 1; (11)

for the arbitrary (normalized) quantum state j�i.
Simultaneously [8],

sup
j�i

h�jR̂ðrÞyR̂ðrÞj�i � sup
jc ri

hc rjR̂ðrÞyR̂ðrÞjc ri

¼ sup
jc i

hc jÂy
r R̂

ðrÞyR̂ðrÞÂrjc i
pðr; jc iÞ

¼ j�rj2
inf
jc i

pðr; jc iÞ ; (12)

so that j�rj2 � infjc ipðr; jc iÞ is satisfied. As the input

state can be written with an arbitrary orthonormal
basis fjwiiji ¼ 0; . . . ; d� 1g as jc i ¼ Pd�1

i¼0 �ijwii where
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P
d�1
i¼0 j�ij2 ¼ 1 and the singular values are defined in

decreasing order,

j�rj2 � inf
jc i

pðr; jc iÞ ¼ inf
f�ig

j�i�
r
i j2 ¼ ð�r

d�1Þ2; (13)

is obtained when �d�1 ¼ 1 and all other �i are zero.
Therefore, the reversal probability for each measure-

ment outcome r has the upper limit as

PrevðrÞ ¼ jhc jR̂ðrÞjc irj2 ¼ j�rj2
Pðr; jc iÞ �

ð�r
d�1Þ2

Pðr; jc iÞ : (14)

We then define the reversibility as the maximal mean value
of reversal probability over all the outcomes r [10],

Prev ¼ max
XN
r¼1

PrevðrÞPðr; jc iÞ ¼ XN
r¼1

ð�r
d�1Þ2; (15)

which notably does not depend on the input state jc i but is
given as a function of the minimal singular value of mea-
surement operators, �r

d�1. Its maximum value Prev ¼ 1 is

obtained by a unitary measurement, meaning that the input
state can be deterministically retrieved with appropriate
reversing unitary operation, while the minimum value
Prev ¼ 0 is given by a von Neumann measurement, imply-
ing that full extraction of information frustrates the revers-
ing process.

Assuming arbitrary mixed input states �̂, we can obtain
the same reversibility with the form in Eq. (15) [10] as

inf�̂pðr; �̂Þ ¼ inf�̂Tr½�̂Ây
r Âr� ¼ ð�r

d�1Þ2 and PrevðrÞ �
ð�r

d�1Þ2=Pðr; �̂Þ so that Prev ¼ PN
r¼1ð�r

d�1Þ2. Therefore,

the result in Eq. (15) is valid for arbitrary input states.
It may be considerable to quantify the disturbance of

quantum states by using the reversibility of measurement.
For instance, we can define a measure of disturbance by the
quantity 1� Prev. It shows that the higher the reversal
probability is, the less the state is disturbed, which satisfies
the requirements for measures of state disturbance listed
in Ref. [4].

Tradeoff relation—We now derive a tradeoff relation
between the information gain and reversibility from the
representation obtained above. An inequality

XN
r¼1

fð�r
0Þ2 þ ðd� 1Þð�r

d�1Þ2g � d; (16)

is derived from the completeness relation in Eq. (4) and the
nonincreasing order of the singular values (�r

0 � �r
1 �

. . . � �r
d�1). From Eqs. (9), (15), and (16), we can finally

obtain a bound inequality for Gmax and Prev as

dðdþ 1ÞGmax þ ðd� 1ÞPrev � 2d; (17)

where 1=d � Gmax � 2=ðdþ 1Þ, which is the main result
of this Letter, showing a tradeoff relation between infor-
mation gain and reversibility.

We can find a measurement that is maximally reversible
for a fixed amount of information gain, which saturates the

inequality in Eq. (17). The necessary and sufficient condi-
tion to reach the equality sign is that each measurement

operator has the form satisfying Ây
r Âr ¼ arjwr

0ihwr
0j þ br1̂

for certain nonnegative parameters ar and br. It is thus
guaranteed that the inequality in Eq. (17) is tight and can
not be further improved. Interestingly, the maximal revers-
ibility in our result does not necessarily correspond to
the minimal disturbance, which is defined by the close-
ness of the transformed state from the input stateR
dc

P
N
r¼1 jhc jÂrjc ij2 [2], while the converse is true.

This implies that our tradeoff relation differs from the
one proposed by Banaszek [2].
For qubit (2-level) systems, a particulary interesting

tradeoff relation is obtained. In this case, the inequality
of Eq. (17) is reduced to a monotonic equation

6Gmax þ Prev ¼ 4; (18)

where 1=2 � Gmax � 2=3. We emphasize that Gmax and
Prev for any ideal measurement should satisfy this
equation. Therefore, we come to a heuristic statement
about quantum measurement ‘the more information is
obtained from a quantum system, the less possible it is to
retrieve the input state of the system’.
Erasing information—The tradeoff relation in (17) and

(18) implicate the possibility of erasing information by
reversing operation. One may ask whether it is possible
to erase the information already obtained and possibly
recorded somewhere else. The answer is ‘yes’ for any
partial information obtained by weak measurement, while
any full information by von Neumann measurement is not
erasable. In order to describe the erasing process, we will

consider two weak measurements, saying fÂrg and fB̂�g,
performed one after the other on an unknown system.
Then, the erasure of information is simply understood as

a collection of the opposite information by fB̂�g that makes

the information already obtained by fÂrg less certain [10].
Let us assume that one element of the second measure-

ment set is given by B̂1 ¼ R̂ðrÞ. If the results of two
measurements are given in turn as r and 1, the total
measurement operation performed on the state is described

by B̂1Âr ¼ R̂ðrÞÂr. From Eq. (10), it satisfies R̂ðrÞÂrjc i ¼
�rjc i independently on the input state jc i, meaning that
no information is obtained about the state. Therefore, we
conclude that the information obtained through a measure-
ment is erased by its reversal.

Since a measurement operator Âr is decomposable into

Âr ¼ D̂rÛr, its optimal reversing operation is given from

Eq. (10) as R̂ðrÞ ¼ �rÛ
y
r D̂

�1
r where Ûy

r ¼ P
d�1
i¼0 jwr

i ihvr
i j

and D̂�1
r ¼ P

d�1
i¼0

1
�r
i
jwr

i ihwr
i j, with an assumption that each

�r
i is nonzero. Then, we can define the erasing operator for

an arbitrary measurement operator Âr as

Ê ðrÞ ¼ �r
d�1D̂

�1
r ¼ Xd�1

i¼0

�r
d�1

�r
i

jwr
i ihwr

i j: (19)
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It transforms the post-measurement state jc ri to

Ê ðrÞjc ri ¼
ffiffiffiffiffiffiffi
Per

p
Ûrjc i; (20)

where Per ¼ hc rjÊðrÞÊðrÞjc ri ¼ ð�r
d�1Þ2=Pðr; jc iÞ, from

which the input state jc i can be retrieved deterministically
by unitary operation [16], meaning that at this stage the

information obtained by fÂrg is erased.
Examples—(i) Assume the case when a von Neumann

measurement with two operators Â1 ¼ j0ih0j and

Â2 ¼ j1ih1j is performed on an arbitrary qubit. Then,
the degree of information gain has the maximal value
Gmax ¼ 2=3 with a zero reversibility (Prev ¼ 0) irrespec-
tively on the input state. It shows that the von Neumann
measurement can not be reversed in any case (the infor-
mation can not be erased).

(ii) Consider a weak measurement described by two

operators Â1 ¼ ffiffiffiffi
�

p j1ih1j and Â2¼j0ih0jþ ffiffiffiffiffiffiffiffiffiffiffiffi
1��

p j1ih1j
where � is defined as the probability of detecting j1i
state (as implemented in Ref. [13]). If the measurement
outcome is r ¼ 1 the state collapses on the state j1i,
while when r ¼ 2 the input state collapses partially
and can be retrieved. The degree of information gain is
Gmax ¼ ð3þ �Þ=6 and the reversibility is Prev ¼ 1� �,
satisfying the tradeoff relation (18).

The information obtained by this measurement
can be erased by properly choosing another measurement.

From Eq. (19), the erasing operator for Â2 [where D̂
�1 ¼

j0ih0j þ ð1= ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �

p Þj1ih1j and �2
1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �

p
] is given as

Ê ð2Þ ¼ �2
1D̂

�1 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �

p j0ih0j þ j1ih1j: (21)

A measurement fB̂�j� ¼ 1; 2g can be then defined with

two operators B̂1 ¼ Êð2Þ and B̂2 ¼ ffiffiffiffi
�

p j0ih0j, satisfying the
completeness relation B̂2

1 þ B̂2
2 ¼ 1. Thus, the information

extracted from the result r ¼ 2 of the first measurement

fÂrg is erased probabilistically by the subsequent measure-

ment fB̂�g when its outcome is � ¼ 1, since the result of

the second measurement makes the information obtained
from the first measurement uncertain. Our formalism is
generally applicable to any examples of weak measure-
ments and reversals in Refs. [9–15].

Remarks—Our result provides a useful framework for
generalizing the quantum teleportation [23]. Suppose that
Alice performs a joint measurement (assumed here as a
projection fjwriabhwrjg for simplicity) on an unknown in-
put jc ia and one party of an entangled channel j�ibc. Here
a, b, and c denote the input, Alice’s, and Bob’s modes,
respectively. The teleportation can then be described as a
reversible measurement with operators fabhwrj�ibcg per-
formed on jc ia so that, based on our formalism, the
extracted information of jc ia during the teleportation
and its reversibility are certainly in the tradeoff relation.
As the reversibility here indicates the success proba-
bility of teleportation, the result is rephrased as ‘the less

information about the input state is disclosed during the
teleportation, the higher the teleportation probability.’ For
example, the standard teleportation [23] is deterministic as
Alice cannot obtain any information of jc ia by the Bell
measurement with a maximally entangled channel. Within
this framework, various tasks of quantum transmission
(e.g., from the teleportations using nonmaximally en-
tangled or nonorthogonal measurements with arbitrary en-
tangled channels to the communications in quantum
networks [24]) can be characterized. The detailed analysis
of generalized teleportation will be presented elsewhere.
Obviously our result manifests the quantum no-cloning

theorem in information-theoretic perspective [25], as a
perfect copy of a quantum state would violate the bound
in Eq. (17), which is a crucial ingredient of quantum
cryptography [26]. Another implication of our result is
that the success rate of quantum error correction should
be bounded by the amount of information loss in the qubit
[8], which may lead to further applications in quantum
computation.
In summary, we derive a tradeoff relation between the

degree of information gain and reversibility in arbitrary-
dimensional quantum measurement. It quantitatively
shows that ‘the more information is obtained from quan-
tum measurement, the less possible it is to undo the mea-
surement.’ Simultaneously, it is clearly shown that undoing
a quantum measurement erases the same amount of infor-
mation obtained by the measurement. Our result, as pro-
viding an information-theoretic insight on quantum
measurement, is expected to widen the potential applica-
tions of weak measurements and reversals in quantum
information processing.
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Appendix.—Suppose that an arbitrary input state jc i ¼

�j0i þ �j1i and ancillary n-qubit states j0i�n are prepared
for the measurement. A general measurement can be de-
scribed as the combination of a unitary operation U
acting on the total (nþ 1) qubits and a projection
measurement acting on the selected m-qubits out of the
(nþ 1) qubits. The probability that m-qubits are projected

on P̂�i ¼ j�iih�ij ¼ ji1; . . . ; imihi1; . . . ; imjði1; . . . ; im 2 f0; 1gÞ
is given by

p�i ¼ TrðP̂�iÛjc ihc j � j0ih0j�nÛyP̂�iÞ: (A1)

If the probability p�i of each measurement outcome �i is
independent on the input state jc i, then no information
about jc i is obtained through the measurement. In this
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case, the input state can be retrieved deterministically as
shown below.

Let us define jc ji ¼ Ûjji � j0i�n (j 2 f0; 1g). Since the
probability p�i in Eq. (A1) is invariant for any input state
jc i, we obtain an orthogonal condition

hc 0j�iih�ijc 1i ¼ 0; (A2)

where hc 0j�ii is a (n�mþ 1)-qubit bra vector. By normal-
izing h�ijc 0i and h�ijc 1i, we obtain two orthonormal
vectors, saying j’0�ii and j’1�ii. Then jc ji can be repre-

sented by

jc ji ¼
X
�i

ffiffiffiffiffi
p�i

p j�ii � j’j�ii; (A3)

where j�ii and j’jii are a projected m-qubit state and a

corresponding (n�mþ 1)-qubit state, respectively. As Û
is a linear operator, the evolution of total nþ 1 qubits

under Û is given by

Ûjc i � j0i�n ¼ X
i

ffiffiffiffiffi
pi

p j�ii � ð�j’0�ii þ �j’1�iiÞ: (A4)

If the outcome on m-qubit projection is j�ii, then remaining
(n�mþ 1) qubits are reduced to �j’0�ii þ �j’1�ii. Since
j’0�ii and j’1�ii are orthonormal vectors determined by Û,
we can retrieve the input state by performing a proper
unitary operation on the remaining state. The reversal is
possible for any measurement outcome �i whenever p�i is
independent of the input state. We thus conclude that if no
information is extracted through the measurement, the
whole information is preserved in the remaining part of
the Hilbert space describing the measurement and the
original state can be retrieved deterministically.
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