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We present a version of continuum elasticity theory applicable to aggregates of functional biomolecules

at length scales comparable to that of the component molecules. Unlike classical elasticity theory, the

stress and strain fields have mathematical discontinuities along the interfaces of the macromolecules, due

to conformational incompatibility and large scale conformational transitions. The method is applied to the

P-II to EI shape transition of the protein shell of the virus HK97. We show that protein residual stresses

generated by incompatibility drive a ‘‘reverse buckling’’ transition from an icosahedral to a dodecahedral

shape via a ‘‘critical’’ spherical shape, which can be identified as the P-II state.
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Continuum physics describes materials in terms of con-
tinuous fields, such as the stress and strain tensor fields of
solids [1], subject to conservation laws, and linked together
by constitutive relations. Whether the constituent compo-
nents are atoms or small molecules, the intercomponent
spacing typically determines a characteristic length scale
below which continuum physics must be replaced by a
discretized, atomistic description. Many of the materials
important in cell biology, such as cytoskeletal protein
filaments, chromatin, bacterial and plant cell walls, and
lipid bilayer membranes, are aggregates assembled from
thousands to millions of macromolecular components
(e.g., proteins, lipids, or even cells). Continuum descrip-
tions have been quite successful in reproducing and ex-
plaining the physical behavior of biological materials on
length scales large compared to that of the components [2],
but as micromechanical techniques continue to provide
experimental characterization at smaller and smaller length
scales, the need has grown to apply or extend continuum
theories to length scales comparable to that of the constitu-
ent components. Intriguingly, because these macromole-
cules are themselves already large compared to atomic
length scales, their mechanical function is generally deter-
mined more by gross three-dimensional shape than by
atomistic-scale structure and interactions, such that
coarse-grained and continuum elastic techniques have be-
come standard tools for modeling even single proteins [3].

Despite these successes, a fundamental obstacle remains
facing the application of continuum elasticity theory to
protein aggregates: a protein has in general an irregular,
asymmetric shape that is incompatible with the continuous
tiling of planes or the filling of space. Elasticity theory
starts from the definition of a stress-free reference state
from which displacements are to be measured. Normally
this state is globally compatible, meaning that the refer-
ence geometry of an elastic body can be described mathe-
matically by a continuous position mapping. However, this

is not generally so for an aggregate of macromolecules,
which need not be geometrically compatible with the final
assembly state. When proteins are held together in aggre-
gates by attractive, noncovalent protein-protein interac-
tions, they will be deformed, necessarily producing
internal ‘‘residual’’ stresses. Moreover, the proteins in an
aggregate are functional entities, possibly active as en-
zymes or motor proteins, and can undergo independent
conformational motions involving large displacements
and deformations that may be discontinuous across
protein-protein interfaces. These considerations pose a
fundamental problem for elasticity theory: although the
molecules may be large enough to justify a continuum
description, the conformational incompatibility of the sub-
units renders the stress-free reference state nontrivial, and
generally distinct from the experimentally observed
structure.
In this Letter we outline an elastic continuum theory for

aggregates of functional proteins applicable at length
scales comparable to that of the proteins themselves (or
larger). It differs from conventional elasticity theory in that
stress and strain fields are no longer continuous functions
of location: interfaces between the constituent components
are lines of mathematical discontinuity in the stress and
strain fields.
The method is best illustrated by a concrete example:

for this we focus on the thoroughly studied bacteriophage
virus HK97 [4]. The capsid of HK97 is a protein shell,
surrounding a double-stranded DNA genome. It is com-
posed of 420 identical proteins arranged in a so called
‘‘T ¼ 7’’ icosahedral lattice of 12 ‘‘pentons’’ and 60
‘‘hexons’’ (see Fig. 1). Viral capsids are not passive con-
tainers but macromolecular machines able to perform
specific tasks. In the present case, insertion of the viral
genome molecule into the capsid triggers a sequence of
conformational changes, known as ‘‘maturation,’’ that pro-
gressively strengthens the shell. The sequence initiates
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with the ‘‘P-II to EI’’ transition [4] (see Fig. 1). Cryo-EM
pictures of HK97 show that this transformation is marked
by both a change in capsid shape from spherical to
polyhedral and a change in the shapes of the hexons from
skewed or ‘‘twisted’’ to symmetric (Fig. 1). Detailed x-ray
reconstructions reveal that the transformation is driven by
the release of elastic energy, stored in the highly deformed
hexons [4]. Although later stages in maturation involve the
formation of new covalent bonds among capsomers, the
P-II to EI transition involves only changes in the shape or
conformation of the proteins, as is more common in matu-
ration of other viruses.

The natural stress-free equilibrium reference state is the
‘‘Caspar-Klug’’ (or CK) icosahedron, a perfect icosahe-
dron, the flat facets of which are covered by twelve regular
pentagons and 10 T� 1 regular hexagons [see Fig. 2(a)]
for certain integer values T ¼ 1, 3, 4, 7, 13, . . . [5]. Apart
from bending energy costs associated with the sharp folds
of an icosahedron, the CK structure is stress free. The
introduction of bending and stretching energies, according
to classical elasticity theory, introduces stress and strain
fields that are analytic functions of position, except at the
fivefold symmetry sites, the locations of fivefold disclina-
tions [6]. The nature of the capsid proteins enters through
the values of a (two-dimensional) Young’s Modulus Y, a
Poisson ratio �, and a bending modulus �. A ‘‘buckling
transition’’ takes place when the Föppl–von Kármán (FvK)

number � ¼ YR2

� exceeds a critical value of the order of

102. When applied to the P-II to EI transformation, the
theory would describe the shape change as a buckling
transition due to an increase of the FvK number across
the buckling threshold. However, the in-plane displace-
ments (skew to symmetric) of Fig. 1 do not match the
predictions of the classical theory.

To account for the conformational change, the reference
state for HK97 is again a collection of hexons and pentons
distributed over a T ¼ 7 shell; but now they are considered
as if they were isolated. The hexons can undergo a large
conformational transformation indexed by a collective re-
action coordinate �: here the amplitude of hexon shear

along a vertex-vertex symmetry direction (see Fig. 1). A
constrained hexon equilibrium free energy f6ð�Þ, a
‘‘potential of mean force’’ (PMF), is assigned to the hex-
ons. The PMF may in general be a multiwelled function
depending on the detailed atomic structure of the proteins
but we only need the fact that, because of the sixfold
symmetry of hexons, f6ð�Þ equals f6ð��Þ so f6ð� ¼ 0Þ
must be an extremum. In view of the thermodynamic
stability of the EI state in the absence of further chemical
reactions, this extremum is an absolute minimum. The free
energy difference between the EI and P-II states drives the
transformation.
The method to model hexon transformation is illustrated

in Fig. 2. Figure 2(a) shows a T ¼ 7 shell assembled from
flat, equilateral hexagons and pentagons following the CK
construction. Energy minimization of the CK icosahedron
partially relaxes bending at the icosahedral edges and
vertices at the expense of some in-plane stretching, to yield
the smooth but aspherical shape in Fig. 2(d), similar to the
EI state. Note that the tiling pattern is chirally asymmetric,
which will play an important role. Figure 2(b) shows what
happens when the isolated hexons undergo a preshear,
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FIG. 2 (color online). Model of incompatible conformational
shearing of HK97 hexons. (a) T ¼ 7 icosahedral lattice.
(b) Incompatible shearing of hexons (� ¼ 0:2) by conforma-
tional deformation gradient tensor G. White arrows indicate the
direction of the conformational shear n̂. (c) Equilibrium shape of
a shell of sheared hexons (� ¼ 0:2) for � ¼ 2000. Compatibility
is restored by a deformation gradient tensor A. Note the
stress discontinuities. Black double-headed arrows indicate
the principal stress direction. (d) Equilibrium shape of shell of
symmetric hexons (� ¼ 0), for which the classical theory of
Ref. [6] is recovered. Note the facets and the absence of stress
discontinuities.

P-II EI-II

FIG. 1 (color online). Maturation of bacteriophage HK97 from
‘‘P-II’’ state to ‘‘EI-II’’ state involves ‘‘unshearing’’ of skewed
hexons.
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denoted by the deformation gradient tensor G, consistent
with Fig. 1: it spoils the tiling. To restore the integrity of the
shell, an additional deformation is introduced, denoted by
the gradient tensor A.

Strains in a continuum containing residual stresses due
to plasticity or other forms of constitutive incompatibility
may be described rationally in large-strain continuum me-
chanics theory by a ‘‘multiplicative split’’ [7] of the gra-
dient tensor F ¼ r ~y ¼ AG of a (continuous, one-to-one)
deformation mapping ~y ¼ ~yð ~xÞ from a position ~x in the
(initial, prestressed) reference configuration to a deformed
position ~y. Here, the conformational part of this decom-
position, G ¼ Iþ �n̂ � m̂, represents the shear of a ref-
erence hexagon with reference to orthonormal unit vectors
n̂ and m̂. As shown in Fig. 2(b), these shear directions are
chosen to be compatible with that of Fig. 1. As a result of
this choice, the conformational movement of the hexons
constitutes a separate source for chirality. The elastic in-
plane strains are described by a right Cauchy-Green defor-
mation tensor C � ATA. Accordingly, there are now two
sources of strain: strain generated by the need to deform
sheared hexons so they can tile a closed shell, and strains
generated by the curvature along the edges of T ¼ 7 icosa-
hedral facets, as in the classical theory. The complete
deformation (and the actual form of C) from the initial
state to the final state [see Fig. 2(c)] is obtained by free
energy minimization. The elastic free energy associated
with the mapping is then

F ¼1

2

Z
dA

�
�ð2HÞ2þKðJ�1Þ2þ�

�
C

J
�2

��
þ60f6ð�Þ;

(1)

In the first term, � is the bending modulus and H the mean
curvature. The second and third terms account for area
dilation and isochoric shear. Here, K is the two-

dimensional (area) bulk modulus, J ¼ ðdetCÞ1=2 is the
deformed-to-reference area ratio, and� is the shear modu-
lus. The last term describes the internal energy of the
hexons. In the limit of small strains with � ¼ 0, this
formulation recovers exactly the model of Ref. [6]. We
note also that in the general case of a multiwelled PMF,
f6ð�Þ, describing transitions between distinct conforma-
tional states, the effective free energy obtained by inde-
pendent minimization or ‘‘static condensation’’ of the
conformational or reference state � will be nonlinear in
the deformation F, much like the nonconvex nonlinear
strain energies common for modeling martensitic phase
transitions in solids [8].

Equation (1) defines a variational energy for the shell
from which the deformation mapping ~y ¼ ~yð ~xÞ must be
determined by minimization at fixed �. Constrained equi-
librium configurations of the shells were computed nu-
merically by minimizing a finite element discretization of
Eq. (1) using C0-Lagrange interpolation for stretching
energies and C1-conforming subdivision surface elements

for bending energies [9]. All integrals are computed over
the icosahedral reference configuration of Fig. 2(a). The
surface position map ~yð ~xÞ of the deformed shape has no
discontinuities. Finally, the free energy must be minimized
with respect to � to set uncompensated forces inside the
hexons to zero.
Shells with symmetric hexons computed this way

[Fig. 2(d), � ¼ 0] reveal the smoothly varying stress
distribution predicted by the classical theory: compressive
stresses emanate from the icosahedral vertices, relaxing
to slightly tensile values away from the pentons. The
pronounced polyhedral shape of Fig. 2(d) indicates
that the FvK number (� ¼ 2000) is well above the critical
value. In contrast, Fig. 2(c) shows that preshear (� ¼ 0:2)
produces a pattern of large jumps or discontinuities
in tangential stress across the capsomer interfaces.
Coincident with this heterogeneous, discontinuous stress
distribution, hexon preshear also produces a notable
change in the shape of the shell: the shell is close to
spherical [Fig. 2(c)] even though the FvK number remains
well above the critical value. In other words, as a function
of the hexon preshear, capsids undergo a reverse buckling
transition at fixed FvK number.
Figure 3 illustrates a mechanism for reverse buckling. A

regular pentagon is surrounded by a ring of five regular
hexagons with the same edge length, all lying in a plane.
Gluing together the edges between the hexagons introdu-
ces elastic stresses that can be eliminated by letting the
structure buckle out of the plane. Next, shearing the hex-
agons along the dashed lines reduces the angular width of
the gaps between the hexons and thus the elastic stresses.
The geometrical construction of Fig. 3 in fact suggests that
there may be a critical preshear such that there is no
buckling at all.
To locate this special preshear, we show in Fig. 4

the bending and stretching energies as a function of � for
� ¼ 2000. The stretching energy is minimized for � ¼ 0,
as would be expected, but the bending energy is minimized
at a finite �. The reason becomes clear when one plots the
asphericity of the shell—the normalized standard deviation
of the radius—as a function of � (solid line with dots): the

FIG. 3. Schematic showing a ring of sheared hexons surround-
ing a penton (gray). The shearing of the hexons both reduces the
disclination angle, and elongates the hexon edges adjacent to the
penton.
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asphericity attains a sharp minimum value at � � 0:2. The
capsid shape is spherical at that point [see Fig. 4(b)], which
indeed is the state of minimum bending energy. The value
of this special shear was found to be insensitive to changes
in the elastic moduli of the shell.

What happens if � is pushed past this ‘‘critical point’’?
The deformed surface becomes flatter over the pentons
while triangular cusps appear at the threefold symmetry
sites in between the pentons. In fact, the capsid is now a
dodecahedron instead of an icosahedron [see Fig. 4(b)].
The critical � thus marks a shape transition from icosahe-
dral to dodecahedral faceting. Note from Fig. 4(a) that
negative values of � produce shell shapes with a level of
asphericity that exceeds that of an icosahedron. The five-
fold sites are then more ‘‘spiky’’ than for a perfect icosa-
hedron, resembling a stellated icosahedron.

One might speculate whether a description that includes
the internal degrees of freedom and incompatibility
stresses could be ‘‘coarse grained’’ to produce a version
of the classical theory with a set of effective moduli, e.g.,
an effective FvK number that depends on the internal
coordinate �. Since there is no icosahedral-dodecahedral
transition in the classical theory, this is not possible beyond
the critical point. However, below the critical point the
computed capsid shapes indeed can be approximated by
the classical theory if one treats the FvK number as a fitting
parameter. Figure 4(b) shows the effective critical FvK
number (at which the asphericity crosses the buckling

threshold) as a function of � (open circles). It increases
by an order of magnitude near the critical point.
An analytical expression for such an effective FvK

number can be obtained from a simplified linear analysis
of Fig. 3. As described in detail in the Supplemental
Material [10], we can approximate the central penton as
a disk of radius ap < R and the five hexons as an annulus

with radii ap < r < R surrounding the central disk.

Introduction of a fivefold disclination at the center, and a
hexon shear stress of amplitude � 30 degrees from radial
in the annulus, has two effects: (i) the annulus expands,
opening a gap along the cut, and (ii) the effective disincli-
nation angle of the annulus is reduced. Restoring compati-
bility by gluing back the outer annulus to the central disk
along the circular cut generates a shear stress discontinuity
along the cut, a slip line. An exercise in classical linear
elasticity (see Supplemental Material [10]) shows that the
elastic stress generated by this operation reduces the in-
plane elastic energy incurred by the disclination, and pro-
duces an effective critical FvK number for buckling:

�Bð�Þ ¼
�

1

�Bð0Þ �
5a2p

11R2
�

��1
: (2)

This expression for �Bð�Þ is plotted as a solid line in
Fig. 4(b), with R=ap ¼ 2 showing excellent agreement

with values obtained from the fully nonlinear numerical
analysis with our finite element model. With increased
preshear the buckling transition is pushed to increasingly
larger values of �. Indeed, the theory predicts a divergence
of �B ! 1 as � ! �crit ¼ R2=24a2p, independent of the

elastic moduli. For � � �crit there is no buckling transi-
tion: the shell should remain spherical no matter how
small the bending modulus �. This simple theory obvi-
ously does not account for the appearance of the dodeca-
hedral shape.
Lastly we consider minimization of the total free energy

with respect to the preshear. As expected, the elastic energy
has a minimum at a value of � in between the critical value
and zero, (roughly � � 0:1, � ¼ 2000), because it is the
sum of stretching and bending energy (solid line in Fig. 4).
Note that, unlike f6ð�Þ, the elastic energy lacks symmetry
under sign exchange of �. This is due to the chirality of the
shear directions on the T ¼ 7 shells. Though f6ð�Þ has an
absolute minimum at � ¼ 0, the absolute minimum of the
total free energy will be at a positive value of � as evident
in Fig. 4. Our theory thus predicts that even in the EI state,
there must be some (small) residual hexon shear. For the
P-II state, experimentally found to be close to spherical,
our theory makes an unambiguous prediction: the hexon
preshear in the P-II state must be close to 0.2 independent
of the elastic moduli of the shell. In fact, the predicted
value is strikingly close to the skew observed in the crystal
structures of HK97 P-II, which is in the range 0.2–0.3 [4].
It is interesting to speculate why the P-II shell is ‘‘critical.’’

FIG. 4 (color online). Asphericity and energy vs hexon shear,

�. (a) Asphericity A ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffih�R2ip
=hRi, normalized by that of an

icosahedron, attains a minimum at � � 0:2 for � ¼ 2000. Total
energy minimized at � � 0:08. (b) Shape phase diagram of
shells with presheared hexons. Open circles: critical FvK num-
ber �B at which the shell buckles. Solid line: Eq. (2). Dashed
line: interpolation. Insets: equilibrium shapes at � ¼ 0, 0.2, and
0.35, contoured by radius, for � ¼ 2000.
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It follows from Fig. 4 that, at the critical point, a change in
preshear from 0.2 to 0.1 changes the effective FvK number
by 2 orders of magnitude. Because the critical state is
sensitive to small structural changes, it sets the stage for
a large conformational change in response to an external
signal.

In summary, we are proposing a method for applying
continuum elasticity to protein aggregates at length scales
comparable to that of the protein themselves. Stress dis-
continuities act as slip planes, allowing for large-scale
conformational incompatibility and protein motion. We
show for the specific case of the P-II to EI transformation
of the capsid of the bacteriophage HK97 that the general-
ized theory qualitatively alters the interpretation of con-
tinuum elasticity theory: the P-II spherical shell is revealed
as a ‘‘critical’’ structure and the range of shapes encoun-
tered in the classical theory is extended to include the
dodecahedron and a (quasi)stellated icosahedron.

More generally, we have shown that the inclusion of
shape incompatibility and prestress are essential compo-
nents of the elasticity theory of protein aggregates. To
demonstrate this general point we have constructed a
highly simplified model, assuming homogeneous shell
thickness and material properties for the capsid proteins.
Moreover we have avoided any detailed consideration of
chemical reactions and/or motor activity that may be in-
volved in driving conformational motion. While the theory
we have presented can be readily applied generally to any
system in which the components retain their functional
identity inside the aggregate, the success of its predictions
clearly relies on additional detailed information on mo-
lecular mechanisms. One essential condition is the avail-
ability of high quality structural information concerning
the macromolecules, as was the case in the example we
discussed here. Furthermore, the molecular dynamics
simulation of more realistic models could provide specific
forms of conformational PMFs, such as f6ð�Þ, enabling the
calculation of thermodynamic properties of aggregates,

and also some understanding of the effects of structural
and conformational nonuniformity.
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