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Resonating valence bond (RVB) states are of crucial importance in our intuitive understanding of

quantum spin liquids in 2D. We systematically classify short-range bosonic RVB states into symmetric or

nematic spin liquids by examining their flux patterns. We further map short-range bosonic RVB states into

projected BCS wave functions, on which we perform large-scale Monte Carlo simulations without the

minus sign problem. Our results clearly show that both spin and dimer correlations decay exponentially in

all the short-range frustrated (nonbipartite or Z2) bosonic RVB states we studied, indicating that they are

gapped Z2 quantum spin liquids. Generically, we conjecture that all short-range frustrated bosonic RVB

states in 2D have only short-range correlations.
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Introduction.—Quantum spin liquids are exotic insula-
tors which cannot be adiabatically connected into a band
insulator and which can support fractionalized excitations
[1]. Introduced by Anderson nearly four decades ago [2],
the resonating valence bond (RVB) state on the triangular
lattice is the first example of quantum spin liquids in more
than one dimension. Since then, there has been keen inter-
est in searching for such exotic states of matter in real
materials as well as in microscopic models, especially after
exciting connections between quantum spin liquids and the
mechanism of high temperature superconductivity were
suggested [3–5].

Recently, there has been a surge of numerical simula-
tions on simple models reporting convincing evidence of
the existence of fully gapped spin liquids [6–11], all of
which are believed to be in the same class of short-range
bosonic RVB states. Nonetheless, the nature of short-range
bosonic RVB states on various frustrated lattices has not
been explicitly revealed [12,13], mainly because of the
so-called minus sign problem in Monte Carlo (MC)
simulations of those bosonic short-range RVB states with
frustration. Because of their conceptual importance in
pictorially understanding quantum spin liquids and their
direct relevance in recent numerical simulations, it is
highly desired to unambiguously demonstrate the nature
of these short-range bosonic RVB states.

In this Letter, we systematically classify short-range
bosonic RVB states by examining their flux patterns [14].
For instance, for the kagome lattice we establish that there
are only four symmetric RVB states when considering
only nearest-neighbor (NN) valence bonds, as is shown
in Fig. 1. Then, we show that these bosonic short-range
RVB states can be exactly mapped into projected BCS
wave functions [15–17] on which we perform large-scale
MC simulations without the minus sign. For frustrated

short-range RVB states, our simulations on corresponding
projected BCS states convincingly show that both their
spin and dimer correlations decay exponentially, indicating
that they are fully gapped Z2 spin liquids [18,19].
Bosonic RVB states.—We consider the following

bosonic RVB states with NN and possibly next-nearest-
neighbor (NNN) valence bonds

jc RVBi ¼
X
c

jci; jci ¼ ð�1Þ�c

Y
ðijÞ2c

fijjiji; (1)

where c labels valence bond configurations and �c repre-
sents the number of bond crossings in c [the factor ð�1Þ�c

is nontrivial only for RVB states with valence bonds be-
yond nearest-neighbor sites]. Here, jiji�ðj "i#ji�j #i"jiÞ=ffiffiffi
2

p
is the spin-singlet wave function (or valence bond) on

ðijÞ and we assume jfijj to respect all the lattice symme-

tries. Note that Eq. (1) represents a ‘‘bosonic’’ RVB state in
the sense that j "i#ji ¼ j #j"ii. Since jiji ¼ �jjii, it is

sufficient to consider fij ¼ �fji. The wave function in

Eq. (1) possesses a gauge symmetry: jc RVBi is invariant,
up to a phase, under the transformation fij ! ei�ifije

i�j .

In the following, we focus on time reversal invariant RVB
states for which all fij can be chosen as real; signs of fij
can be represented by oriented arrows on graphs: an arrow
pointing from i to j means that fij > 0, as is shown in

Fig. 1. We further define flux �p ¼ 0; � (mod 2�) for

plaquette p through

Ycc
ðjkÞ2p

sgnðfjkÞ ¼ expði�pÞ; (2)

where cc means that the counterclockwise order of ðjkÞ is
taken in the product above and sgn is the sign function. It is
clear that�p is gauge invariant for even-length plaquettes p.
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However, the gauge transformation with expði�jÞ ¼ i on

every site j changes �p to �p þ � for all odd-length

plaquettes p. In other words, the two wave functions with
flux patterns f�pg and f�p þ ð�1Þnp�g (np is the length of

plaquette p) actually represent the same state [20].
There are two questions to be answered concerning the

wave function in Eq. (1). First, is it a symmetric spin liquid
respecting all the symmetries of the lattice in question?
Second, do various correlations decay in power law or
exponentially? The first question can be answered by
examining its flux pattern f�pg. If the flux pattern f�pg is
invariant up to the addition of fð�1Þnp�g, under all lattice
symmetry transformations such as translations, rotations,
and reflections, the corresponding RVB state is then a
symmetric spin-liquid state . We label RVB states whose
longest valence bonds are between NN (NNN) sites as NN
RVB (NNN RVB) states. On the kagome lattice, we iden-
tify four NN RVB states as symmetric spin liquids, as is
shown in Fig. 1. On the triangular lattice, only two sym-
metric NN RVB states are found, as is shown in Fig. 2. On
the square lattice, there are two symmetric NN RVB spin
liquids and four symmetric NNN RVB states, as is shown
in Fig. 3.

For these symmetric RVB spin liquids, it is not known
a prioriwhether various correlations decay in power law or
exponentially. Generically, numerical MC simulations are
capable of revealing those features [21]. The correlations
of a physical quantity O are given by

hOiOji ¼
hc RVBjOiOjjc RVBi

hc RVBjc RVBi ;

¼
P

c;c0 hcjc0i
hhcjOiOjjc0i

hcjc0i
i

P
c;c0 hcjc0i

; (3)

where hcjc0i (jhcjc0ij) can be taken as statistical weight
in MC simulations when they are positive (negative).
For instance, for the square lattice NN RVB state with
f�p ¼ 0g, hcjc0i � 0 for any c and c0, on which large-scale
loop-algorithm MC simulations [22] were performed re-
cently, reporting convincing evidence that this RVB state is
critical with power-law decaying dimer corrections [23,24].
However, it is impossible to choose hcjc0i � 0 for all c

and c0 for NN RVB states on nonbipartite lattices (e.g., the
triangular lattice) or NNN RVB states on bipartite lattices
(e.g., the square lattice). Such states are examples of frus-
trated RVB wave functions defined as ones whose valence
bonds form nonbipartite graphs. It is clear that loop-
algorithm MC simulations on frustrated RVB states suffer
from the minus sign problem in the variational level. In the
following, we shall show that the RVB states in Eq. (1) can
be exactly mapped into Gutzwiller projected BCS states,
which are friendly to MC simulations, without the minus
sign problem.
Projected BCS states.—It was known that the variational

Monte Carlo method has been quite successful in simulat-
ing Gutzwiller projected BCS wave functions. We consider
the following projected BCS wave functions:

jc p�BCSi ¼ PG exp

�X
ðijÞ

gijðcyi"cyj# � cyi#c
y
j"Þ
�
j0i; (4)

where cyi� are electron creation operators, j0i is the
vacuum, PG is the Gutzwiller projection onto singly
occupied states, and gij ¼ gji, which are assumed to be

real. A similar gauge symmetry exists for the projected
BCS wave functions: the wave function is invariant, up

to a phase, under the transformations gjk ! expði�f
j Þgjk

expði�f
kÞ. For time reversal invariant states with real gjk,

FIG. 2. The flux patterns f�pg of the two symmetric NN RVB
states on the triangular lattice.

FIG. 3. The flux patterns f�pg of (a) the two symmetric NN
RVB states and (b) the four symmetric NNN RVB states on the
square lattice.

FIG. 1. (a) The flux patterns f�pg of the only four symmetric
NN RVB states on the kagome lattice. Here, ex and ey represent

the unit vectors. (b) The flux patterns f�f
pg in the corresponding

projected BCS states.
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we define fermionic fluxes �f
p through

Q
ðjkÞ2psgnðgjkÞ ¼

expði�f
pÞ with �f

p ¼ 0; � (mod 2�). Similarly, the flux

patterns f�f
pg and f�f

p þ ð�1Þnp�g are equivalent through
the gauge transformation expði�f

j Þ ¼ i on all sites j. As

shown in detail in the Supplemental Material [25], we
obtain jc p�BCSi ¼ jc RVBi when the following conditions

are satisfied:

jgjkj ¼ jfjkj; �p ¼ �f
p þ �; (5)

where p labels all possible elementary plaquettes.
Ground-state correlations.—We have investigated a

number of short-range frustrated RVB states by performing
MC simulations on their corresponding projected BCS
wave functions. In our numerical calculations, we mainly
focus on spin as well as dimer correlations and study
whether they fall off in power law or exponentially at large
distances. The spin and dimer correlations are defined as
follows:

Sð~lÞ ¼ hS ~ri � S~riþ~li;
D�ð~lÞ ¼ hðS~ri � S~riþe�ÞðS~riþ~l � S~riþ~lþe�

Þi � hS~ri � S~riþe�i2;
where e� labels lattice vectors.

We have studied all of the four symmetric NNN RVB
states on the square lattice, the four symmetric NN RVB
states on the kagome lattice, and the two symmetric NN
RVB states on the triangular lattice. As discussed in detail
later, for all these frustrated RVB states our MC simula-
tions convincingly show that their spin and dimer correla-
tions fall off exponentially with correlation length in the
order of 1 lattice constant, indicating that they are all
gapped Z2 quantum spin liquids. (Note that different sym-
metric spin-liquid states on the same lattice may be dis-
tinguished by numerically computing local correlations.)
We conjecture that our results are generic: all frustrated
short-range RVB states in 2D are fully gapped.

The kagome lattice.—According to the flux pattern

(either f�pg or f�f
pg) on the kagome lattice, it is straight-

forward to show that there are four symmetric NN RVB
spin liquids, as is shown in Fig. 1. We have computed the
spin and dimer correlations for all of the four symmetric
NN RVB spin liquids. In Fig. 4, we plot the spin and dimer
correlations as a function of distance (l) in one of those
NN RVB symmetric states, i.e., the counterclockwise-
counterclockwise NN RVB state (A) shown in Fig. 1.
The MC calculations are carried out on a lattice with
18� 18� 3 sites and with periodic boundary conditions.
It is remarkable that the correlations decay extremely fast.
From Fig. 4, it is clear that both spin and dimer correlations
decay exponentially at a distance. The spin correlation
length �s for this NN RVB state is about 0.6 lattice
constants. The dimer correlation lengths �d;x and �d;y for

DxðlexÞ and DxðleyÞ are nearly equal, which are about

1.2 lattice constants. The spin and dimer correlation

lengths [�s and �d � ð�d;x þ �d;yÞ=2, respectively] for all
of the four symmetric NN RVB spin liquids are listed in
Table I. The correlation lengths are all in the order of
1 lattice constant, indicating that they are fully gapped
Z2 quantum spin liquids. This is consistent with the recent
density matrix renormalization group evidence that the
ground state of the kagome Heisenberg antiferromagnet
is a fully gapped quantum spin liquid [8,9] with correlation
lengths of about one lattice spacing [9].
To get a sense of which of the above states is the best

variational wave function for the kagome antiferromagnet
described by H ¼ J

P
hijiSi � Sj, we compute their varia-

tional energy per site, as is shown in Table I. Among
the four symmetric NN RVB spin-liquid states, the
counterclockwise-counterclockwise NN RVB state has
the lowest energy for the kagome antiferromagnet, which
is �0:393J per site. This energy still differs from the
density matrix renormalization group result, indicating
that longer-range valence bonds are important in describ-
ing the kagome antiferromagnet.
The triangular lattice.—It turns out that there are only

two symmetric NN RVB spin-liquid states on the triangular
lattice, whose flux patterns f�pg are shown in Fig. 2. For

both states, the spin and dimer correlations decay expo-
nentially with distance, with �s ¼ 0:7 and �d ¼ 1:0 for
state (A), shown in Fig. 2, and �s ¼ 1:0 and �d ¼ 1:6 for
state (B), shown in Fig. 2. Both NN RVB states are then

FIG. 4 (color online). The spin and dimer correlations as a
function of distance in the NN RVB state (A) shown in Fig. 1.

TABLE I. The spin (�s) and dimer (�d) correlation lengths of
the four symmetric states on the kagome lattice shown in Fig. 1.
Here, E labels the variational energy per site of those symmetric
states for the kagome NN antiferromagnetic Heisenberg model
H ¼ J

P
hijiSi � Sj.

kagome NN RVB state A B C D

�s 0.6 0.6 0.6 0.7

�d 1.2 1.0 1.0 0.9

E=J �0:393 �0:36 �0:357 �0:386
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gapped Z2 spin liquids. The correlation lengths on the
triangular lattice are somewhat longer than those on the
kagome lattice, which is expected due to more geometric
frustrations in the kagome lattice.

The square lattice.—It was shown recently that the un-
frustrated NN RVB state on the square lattice is a critical
state with power-law dimer correlations, even though its
spin excitations are gapped [23,24,26]. To have a fully
gapped spin-liquid phase on this lattice, it is necessary to
include frustration in short-range RVB states. In this Letter,
we consider to include NNN valence bonds, which is partly
motivated by a recent study establishing that fully gapped
spin-liquid ground states are realized in the generalized
[27] quantum dimer models [28] with NN and NNN dimers
on the square lattice. [Note that the nature of NNN
RVB states in Eq. (1) without the factor ð�1Þ�c remains
unknown due to the lack of mapping between them and
projected BCS states.]

From the flux pattern f�pg, we have identified four

symmetric NNN RVB states on the square lattice, as is
shown in Fig. 3(b). For each of these four states, there is an
additional parameter labeling the wave function, namely,
the ratio � � jfNNN=fNNj. We take � ¼ 1 in our MC
simulations. For � ¼ 1, both spin and dimer correlations
decay exponentially with distance. The correlation lengths
are listed in Table II, where �d;NN and �d;NNN mean the

correlation lengths of NN and NNN dimers, respectively.
At � ¼ 1 (more generally, � > 0), we conclude that the
four symmetric NNN RVB states are fully gapped Z2 spin
liquids, which is consistent with the recent numerical
evidence of fully gapped spin liquids in the J1-J2 square
Heisenberg antiferromagnet [10,11]. The variational ener-
gies of these NNN RVB states in units of J1 for the J1-J2
square Heisenberg model with J2 ¼ J1=2 are shown
in Table II.

Nematic RVB spin liquids.—We have studied fully sym-
metric short-range RVB spin liquids on various lattices. An
interesting question is whether short-range RVB states
could be nematic spin liquids which are translationally
invariant but break lattice point group symmetry. The
answer is yes. On the kagome lattice, we identified that
there are only four NN RVB states which are nematic spin
liquids, as is shown in Fig. 5(a). On the triangular lattice,
there are two nematic NN RVB states, as is shown in
Fig. 5(b). Our MC simulations show that the correlation
functions of spins and dimers in these states decay

exponentially with distance, but the C6v symmetry of
both lattices is broken. They are fully gapped nematic
spin liquids, in contrast with gapless nematic spin liquids
on the triangular lattice studied in Ref. [29].
On the square lattice, we found six nematic NNN RVB

spin-liquid states, which are shown in Fig. 5(c). These
spin-liquid states keep the translational symmetry but
break the C4v rotational symmetry of the square lattice.
Again, our MC simulations show that they are fully gapped
nematic spin liquids.
Concluding discussions.—On the square (or honey-

comb) lattice, there are two kinds of symmetric NN RVB
spin liquids. The f�p ¼ 0g NN RVB state is unfrustrated

with power-law decaying dimer correlations [23,24]. For
the f�p ¼ �g NN RVB state, our MC simulations on the

square lattice with 40� 40 sites implies that its dimer
correlation decays in power law, even though we need
further studies on systems with larger sizes to determine
the power exponent accurately. [Here, the power-law
decaying dimer correlations are expected since bipartite
RVB states are effectively described by an emergent U(1)
gauge theory.]
A recent loop-algorithm MC study shows that the

unfrustrated NN RVB states on the cubic and diamond
lattices show magnetic long-range order [30]. Properties
of NN RVB states on 3D frustrated lattices remain un-
known, partly due to the minus sign problem in loop-
algorithmMC simulations. We can generalize the mapping
between short-range bosonic RVB states and projected
BCS states discussed in the present Letter to three dimen-
sions. Consequently, we can solve the minus sign problem
for a class of frustrated short-range RVB states, which is a
significant step towards understanding the nature of short-
range frustrated RVB states in 3D.
We are grateful to Zheng-Yu Weng and Tao Xiang for

sharing computing resources and thank Steve Kivelson
and Tao Li for helpful discussions. This work is supported
in part by the NSFC under Grants No. 10704008 and

FIG. 5. The flux patterns f�pg of (a) the four nematic NN RVB
states on the kagome lattice, (b) the two nematic NN RVB states
on the triangular lattice, and (c) the six nematic NNN RVB states
on the square lattice.

TABLE II. The correlation lengths and variational energies of
the four symmetric NNN RVB states on the square lattice.

Square NNN RVB state A B C D

�s 1.1 0.8 0.7 0.6

�d;NN 1.2 1.6 1.3 1.4

�d;NNN 0.6 0.6 0.6 0.5

E=J1 �0:344 �0:219 �0:237 �0:239
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No. 11274041 (F. Y.) and by Tsinghua Startup Funds and
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Note added.—After the completion of the present Letter,
we noticed the Letter by J. Wildeboer and A. Seidel study-
ing topics that partly overlap with the present Letter but are
from seemingly different approaches [31].
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