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We introduce a Monte Carlo scheme based on sampling of Pfaffians to investigate Anderson’s

resonating-valence-bond (RVB) spin liquid wave function on the kagome and the triangular lattice.

This eliminates a sign problem that prevents utilization of the valence bond basis in Monte Carlo studies

for nonbipartite lattices. Studying lattice sizes of up to 600 sites, we calculate singlet-singlet and spin-spin

correlations and demonstrate how the lattice symmetry is restored within each topological sector as the

system size is increased. Our findings are consistent with the expectation that the nearest-neighbor RVB

states describe a topological spin liquid on these nonbipartite lattices.
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Introduction.—It has been almost four decades since
Anderson proposed [1] the quantum spin liquid state. Its
undiminished appeal stems from a variety of applications
from high temperature superconductivity [2] to quantum
computing [3,4]. The nature of the short-ranged variant of
Anderson’s ‘‘resonating-valence-bond’’ (RVB) spin liquid
as a topological phase became understood through a series
of papers [5–7]. In particular, the invention of quantum
dimer models [7] as an approximation to spin models
finally led to a lattice model exhibiting a topological
RVB liquid phase [8,9]. This, however, did not immedi-
ately address the (original) question whether this exotic
phase could be stabilized within the phase diagram of
SU(2)-invariant local spin-1=2 Hamiltonians. This was
subsequently established for highly decorated lattices
[10] and certain bipartite lattices [11], by finding a parent
Hamiltonian for the simplest, i.e., nearest-neighbor, ver-
sion of the prototypical RVB spin liquid wave function on
such lattices. Work on quantum dimer models [8,12–14],
however, strongly suggests that nearest-neighbor RVB
states should be critical on bipartite lattices, as demon-
strated recently [15,16]. They should describe a Z2-spin
liquid with exponentially decaying correlations only in the
nonbipartite case. While rigorously proven in the quantum
dimer case, it is highly nontrivial to establish this statement
for the spin-1=2 RVB wave functions, due to orthogonality
issues (cf., e.g., [17]). In the nonbipartite case, the nature of
the correlation functions of the local spin and valence bond
operators has not yet been studied systematically. This is
largely due to a sign problem that will be addressed in this
Letter. We finally mention that, for the kagome case, the
short-ranged RVB state studied here has been proven to be
the ground state of a local parent Hamiltonian [18] (cf. also
[19,20]). The present Letter will provide essential evidence
from correlations demonstrating that the kagome lattice
RVB ground state of the Hamiltonian given in [18] is a
topological (Z2) spin liquid.

Method.—The standard method for calculating correla-
tions of these wave functions on bipartite lattices is based
on the observation that a general correlator between two
local operators O1 and O2 takes on the form

hRVBjO1O2jRVBi
hRVBjRVBi ¼

P
D;D0 hDjO1O2jD0i
P

D;D0 hDjD0i : (1)

Here, D and D0 represent dimerizations of the lattice, the
sums run over all possible dimerizations, jDi is a nearest-
neighbor valence bond state associated with a given di-
merization and a link orientation of the lattice (defined
below), and jRVBi is the RVB state, jRVBi ¼ P

DjDi.
Since every pair of dimer configurationsD,D0 corresponds
to a configuration of nonintersecting close packed loops on
the lattice, Sutherland pointed out [21] that the evaluation
of such correlation functions may be reduced to the study
of a classical loop gas model. This is so provided that the
overlaps hDjD0i are strictly non-negative. Otherwise, the
evaluation of these correlators through Monte Carlo meth-
ods suffers from a sign problem. Indeed, it is not difficult to
show that, e.g., for the kagome lattice, for any sign con-
vention for the states jDi some of the overlaps hDjD0i are
always negative. It is clear that such a sign problem would
never arise were we to work with an orthogonal basis. In
this case, only strictly positive diagonal terms appear in the
denominator of the expression replacing Eq. (1). An ob-
vious candidate for such a basis is the ‘‘Ising’’ basis, where
local spins have definite z projection, jRVBi ¼ P

IaIjIi,
and I runs over all possible Ising spin configurations.
Two primary questions need to be addressed to determine
whether the Ising representation lends itself to
Monte Carlo evaluation of correlations. The first is the
obvious question whether, for the wave function jRVBi,
the coefficients aI in the above representation can be
efficiently calculated. The second question relates to the
observation that, for the short-ranged RVB state jRVBi, it
turns out that only a small fraction of configurations I will
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lead to nonzero aI. One may, however, ask if, once an I
with nonzero aI is found, a sufficiently local update of I
has a high chance of leading to a new I0 with aI0 � 0. To
proceed, we first need to express the wave function jRVBi
in the Ising basis. We observe that, in the Ising basis, the
wave function jRVBi can be naturally written as a
‘‘Haffnian’’ [22]:

aI ¼ Haff½MijðIÞ�
� 1

2N=2ðN2 !Þ
X

�2SN

M�1�2
ðIÞM�3�4

ðIÞ � � � � �M�N�1�N
ðIÞ:

(2)

Here, M is a symmetric matrix whose indices run over the
N lattice sites and which depends on the Ising configura-
tion via MijðIÞ ¼ �ijð��i;"��j;# � ��i;#��j;"Þ, where the �i

describe the Ising configuration I. � runs over all permu-
tations of the N sites, and �ij is the matrix describing the

chosen orientation of the lattice. An orientation refers to a
relation defined between any two nearest-neighbor lattice
sites i, j, according to which either i < j or i > j holds.
Then,�ij ¼ 0 if i, j are not nearest neighbors;�ij ¼ 1 for

i > j; and �ij ¼ �1 for i < j. Here, we consider the

orientation chosen for the kagome lattice indicated by the
arrows in Fig. 1(a). The formal definition of the Haffnian is
related to that of the Pfaffian through omission of the sign
factor ð�1Þ�. While the Pfaffian and the determinant can
be evaluated in polynomial time, it is not known how to do
this for the other two cases. It would thus be desirable to
rewrite Eq. (2) through a Pfaffian. Luckily, this is the same
problem that Kasteleyn solved long ago [23], which has
been a standard tool in the study of classical and quantum
dimer models. In the present context, it does not seem to
have enjoyed much attention. Kasteleyn evaluated the
partition function of the classical dimer gas, which is
exactly Eq. (2) with Mij replaced by j�ijj. He found that

this problem may be written as Pfaff½j�ijj�K
ij�, where �K

is a matrix similar to �, but describing a different, so-
called ‘‘Kasteleyn’’ orientation of the lattice. For planar
lattice graphs, such an orientation may generally be found.
A Kasteleyn orientation for the kagome lattice is given in
[24]. The same method works in Eq. (2) [22]. We thus have
aI ¼ Pfaff½MijðIÞ�K

ij�. We are now in a position to cast the

problem of evaluating the correlation functions (1) as a
classical statistical mechanics problem. We have

hRVBjOiOjjRVBi
hRVBjRVBi ¼

P
I

P
I0 aIaI0 hI0jOiOjjIiP

I jaIj2

¼
P

I jaIj2
P

I0
aI0
aI
hI0jOiOjjIi

P
I jaIj2

: (3)

This may now be interpreted as the classical expectation
value of a quantity f: hfi ¼ P

IfIe
�EI=

P
Ie

�EI . Here,

e�EI ¼ jaIj2, and the value fI of the quantity f in the
Ising configuration I is given by fI ¼ P

I0 hI0jOiOjjIi aI0aI .
We have now demonstrated that the evaluation of corre-

lation functions can be cast in terms of a partition function,
whose weights are positive and can be evaluated in poly-
nomial time (the structure of our Pfaffian in fact allows
reduction to the determinant of an N=2� N=2 matrix).
Returning to our earlier caveat, we moreover found that,
once we have an initial Ising configuration I with aI � 0,
performing updates [22] by exchanging neighboring spins
has a high chance of leading to a new configuration I0 with
aI0 � 0. The basic requirements for Monte Carlo evalu-
ation are thus met.
Results.—Simulations are now performed for different

lattice sizes. For the kagome lattice, we have chosen ðm; nÞ
as defined in Fig. 1 to be (10, 5) for periodic boundary
conditions (PBCs) and to be (20, 8) and (20, 10) for open
boundary conditions (OBCs), resulting in a total number of
N ¼ 150, 480, and 600 sites, respectively (and in lattices
with a roughly unit perpendicular aspect ratio). For the
triangular lattice, we show data belonging to a 20� 20
‘‘square’’ with diagonals (see Fig. 1) giving a lattice of 400
sites. In one Monte Carlo sweep through the lattice, we
attempt to do a number of N exchanges of two neighboring
spins. All expectation values were calculated by making
about 1 500 000 measurements on the configurations pro-
duced by the Monte Carlo process, allowing the system to
equilibrate for 8000 sweeps. Autocorrelation times are
generally quite low, on the order of 1.
Figure 2 presents the connected correlation function of

the ‘‘dimer’’ or valence bond operator ~Si � ~Siþx, where i
and iþ x are nearest neighbors, for different lattice sizes
and boundary conditions. It is evident that there is a finite
and very short correlation length. From the inset, it is clear
that the absolute values of the correlation functions follow
a simple exponential law already at short distance, from
which we obtain a correlation length of � ¼ 1:12ð3Þ.
Moreover, the plot for 600 sites and OBCs coincides very
well with that for 150 sites and PBCs. We note that, for the

FIG. 1. (a) Shape of the kagome lattice used in the calcula-
tions. The lattice consists of m unit cells in the a direction and n
unit cells in the b direction, for a total of 3mn sites. Periodic
boundary conditions may or may not be introduced with periods
ma and nb. (b) The orientation used in the sign convention for
the triangular lattice.
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case of PBCs, the method used to treat the classical dimer
case [24] can again be adapted to the present situation and
yields an expression of the amplitude aI as a superposition
of four Pfaffians. Different such superpositions can be used
to project onto different topological sectors of the toroidal
system. While only one topological sector is shown, we
have also convinced ourselves that results for different
topological sectors agree within error bars. The fact that
the dimer-dimer correlations are apparently insensitive to
both lattice size and boundary conditions, already for a
relatively small size of 150 sites, is consistent with the
hypothesis of a gapped state. We note, moreover, that the
decay is very reminiscent of the quantum dimer model
case, where dimer-dimer correlations have been shown to
decay superexponentially, with correlations being exactly
zero beyond distance 2 [25]. While this is clearly not the
case for the RVB state, a very short correlation length of
the order of 1 still mimics this behavior fairly closely. The
qualitative agreement between the quantum dimer model
and the RVB state is thus quite striking.

Figure 3 shows the dimer-dimer correlations for a 400
site triangular lattice, displaying similarly short-ranged
correlations. Subdominant corrections to the dominant ex-
ponential decay are clearly somewhat more important than
for the kagome, as one would generically expect; however,
a correlation length close to 1.6 is still clearly visible in the
inset. All linear fits are obtained from a weighted least
square regression, where the weights have been chosen as
the inverse squares of the error bars. Note that, although the
value at distance zero has not been included into any fit,
even this shortest distance data point tends to follow the
exponential trend very well. We point out that a sign
convention for the triangular lattice exists which eliminates
the sign problem of Eq. (1) [26]. Here, however, we have

chosen a different convention [Fig. 1(b)], for which this
problem persists.
We also computed spin-spin correlation functions

h ~Si � ~Sji. Results are shown for the kagome in Fig. 4 and

for the triangular lattice in Fig. 3. Spin-spin correlations
decay exponentially even in the critical square-lattice case
[27] and by theoretical prejudice should decay exponen-
tially for all short-ranged RVB states. Moreover, even on
the kagome, data obtained from the density matrix renor-
malization group method have predicted a spin liquid
phase with gapped spin but gapless singlet excitations [28].
This might render the singlet sector more crucial in the

FIG. 3 (color online). The dimer-dimer and spin-spin correla-
tion functions for a 400 site triangular lattice with OBCs. The
inset shows a logarithmic plot with fits, giving a correlation
length of 1.15(2) for the dimer-dimer decay. The spin-spin
correlations display stronger even or odd effects at a short
distance. Fitting only odd distances in the spin-spin case gives
a correlation length of 1.61(2).

FIG. 2 (color online). The dimer-dimer correlation function
shown for kagome lattices with PBCs and OBCs. Insensitivity
to system size and short correlation length are evident. The PBC
case has been calculated within a fixed topological sector. The
inset shows a logarithmic plot including a linear fit, yielding a
correlation length of 1.12(3).

FIG. 4 (color online). The spin-spin correlation functions

h ~Si ~Siþ�i and hSziSziþ�i for different kagome lattices (PBC and

OBC). Again, the topological sector was fixed in the PBC case.
The inset shows a logarithmic plot with a linear fit, yielding a
correlation length of 2.08(2).
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present context. Nonetheless, direct demonstration of the
exponential decay of spin-spin correlations is not straight-
forward, especially in the presence of the sign problem
discussed initially. Again, the short-ranged nature of the
correlations is apparent in both cases. As a consistency

check, both h ~Si � ~Sji and 3hSziSzji are shown, which must

agree by SU(2) symmetry. This symmetry is, however, not
manifest in the Ising basis with which we are working [29].

Up to now, we have demonstrated that connected corre-
lations for the RVB states on the kagome and triangular
lattices are short-ranged. This does not, however, by itself
guarantee the liquid property of these states. In particular,
the four degenerate RVB ground states on the torus trans-
form nontrivially under the space group of the lattice, and,
to demonstrate the liquid property and rule out the possi-
bility of a valence bond solid [31], it is essential to show
that the full lattice symmetry is restored in the thermody-
namic limit for each individual ground state (within each
topological sector). We restrict ourselves to the kagome
lattice here. In the following, wewill refer to lattice links as
‘‘symmetry inequivalent’’ if they are not related by a
symmetry of the wave function (even though they may be
related by a symmetry of the lattice). For lattices of the
shape shown in Fig. 1(a), withm and n both even, any three
links along different directions will always exhaust all
possible classes of inequivalent links. In Fig. 5, we plot
the expectation values of the dimer operator for three such
links, evaluated in one topological sector, for various
‘‘even-even’’ lattices. One observes that the discrepancy
between inequivalent links rapidly decreases by a factor of
at least 60 between 24 and 48 sites, taking into account
error bars. (The consistency between symmetry equivalent
links suggests that the error is much smaller than
shown and that the factor is really on the order of 100.)

For larger lattice size, the calculation becomes increasingly
demanding, since, presumably, increasingly smaller error
bars are needed to resolve the discrepancy in expectation
values, while even maintaining the size of the error bars is
more costly (Fig. 5). It is worth noting, though, that the
average of the three expectation values for 72 and 96 sites
appears to have converged, and we are thus approaching
the thermodynamic limit. In all, these findings are highly
consistent with the general expectation that the RVB states
describe a topological spin liquid.
Conclusion.—In this Letter, we have studied correlation

functions of nearest-neighbor resonating-valence-bond
wave functions on both the kagome and the triangular
lattices, with up to 600 lattice sites. A sign problem of
earlier methods has been circumvented by using a Pfaffian
representation of the wave function in the Ising basis. This
allows for evaluation of correlators for both OBCs and
PBCs and, in the latter case, restriction to a single topo-
logical sector. This allowed us to present strong evidence
that, not only do correlations decay exponentially as ex-
pected, but also that no broken lattice symmetry remains in
the thermodynamic limit for the kagome lattice. For the
kagome, this greatly adds to the amassed evidence that
local SU(2)-invariant Hamiltonians stabilizing a topologi-
cal spin liquid state are possible [18,30]. Further possible
applications of our method include the investigation of
short-ranged RVB wave functions on other nonbipartite
lattices. In particular, certain next-nearest-neighbor links
may be introduced in standard lattice geometries such as
the square lattice [32], as long as the planarity of the lattice
is maintained. This makes it natural to introduce different
weights for different types of valence bonds. Furthermore,
our method allows for the introduction of any number of
mobile (delocalized) holes and thus the study of monomer
correlations and the related confinement or deconfinement
issue. We are hopeful that these prospects will stimulate
future work.
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Note added in proof.—Recently, Ref. [35] has appeared,

where similar results are obtained using an approach that
has been outlined in Ref. [36].
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