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Engineering nanomechanical quantum systems possessing ultralong motional coherence times allows

for applications in precision quantum sensing and quantum interfaces, but to achieve ultrahigh motionalQ

one must work hard to remove all forms of motional noise and heating. We examine a magneto-

meso-mechanical quantum system that consists of a 3D arrangement of miniature superconducting loops

which is stably levitated in a static inhomogeneous magnetic field. The motional decoherence is

predominantly due to loss from induced eddy currents in the magnetized sphere which provides the

trapping field ultimately yielding Q� 109 with motional oscillation frequencies of several hundreds of

kilohertz. By inductively coupling this levitating object to a nearby driven flux qubit one can cool its

motion very close to the ground state and this may permit the generation of macroscopic entangled

motional states of multiple clusters.

DOI: 10.1103/PhysRevLett.109.147206 PACS numbers: 85.85.+j, 42.50.Lc, 45.80.+r, 74.25.Ld

Recently there has been considerable effort towards
mapping the boundary between the classical and the quan-
tum world by exploring the physics of mesoscopic and
macroscopic mechanical systems. From an applications
point of view, as precision measurement of position and
acceleration generally involve some kind of motion, the
necessity of building smaller and more sensitive devices
has required a more careful exploration of the classical-
quantum limit. The possibility to couple, control, and
measure mesomechanical motion in a wide range of differ-
ent physical systems leads to new experimental applica-
tions in diverse fields such as measuring forces between
individual biomolecules [1–3], magnetic forces from
single spins [4], perturbations due to the mass fluctuations
involving single atoms and molecules [5], pressure [6] and
acceleration [6], fundamental constants [7], small changes
in electrical charge [8], gravitational wave detection [9],
and applications in quantum computation [10], quantum
optics [11], and condensed matter physics [12,13].

Observing any quantum properties of a mechanical sys-
tem is a challenge. Under typical conditions, energy losses,
thermal noise, and decoherence processes make it impos-
sible to observe any motional quantum effects. To observe
quantum mechanical motional effects the system has to be
close enough to its ground state and it has to preserve this
quantum coherence for a reasonable amount of time. This
leads to the necessity of engineering ultralow dissipative
systems which, in oscillating systems, is measured by the
quality factor Q representing the energy lost per cycle. To
achieve this one must engineer a system which is mechani-
cally isolated from its surroundings to an extreme level. On
the other hand, one must also find a way to cool down the
motion close to its motional ground state which necessities
coupling that system to another in order to dump entropy.
Numerous mesomechanical oscillating systems have been

studied recently, such as cavity optomechanical experiments
employing cantilevers [14], micromirrors [15,16], micro-
cavities [17,18], nanomembranes [19], macroscopic mirror
modes [20], and optically levitated microspheres [21] and
nanospheres [22] (see [23]). As shown in Ref. [24], it has
been possible to create and control quantum states, but,
except in a few cases, reaching large Q for nano- to micro-
scopic sized motional devices is still an open problem. In
fact, while a mechanical oscillator usually involves many
coupled degrees of freedom, we are interested in the quan-
tum behavior of one of them: the center of mass motion.
We present a theoretical model for a mesoscopic me-

chanical oscillator. In our setup, a strongly inhomogeneous
static magnetic field generated by a magnetized sphere is
placed above a cluster, hereafter the resonator, of three
orthogonal superconducting loops (see Fig. 1). Coupling
one of the loops inductively to a superconducting flux
qubit, we describe a protocol for cooling the center of
mass translational degree of freedom for vertical motion
close to the ground state. More specifically, the low me-
chanical frequency is on resonance with the dressed fre-
quency of the (driven) qubit. Together with the high
mechanical quality factor, this resonance condition allows
for the energy to be dissipated in the qubit environment.
We also assume the resonator and the qubit to be connected
to separate thermal baths with temperatures, respectively,
Tr and Tq, and these can be different, for instance, due to

additional motional noise associated with, e.g., actively
controlling the position of the magnetic sphere.
The total Hamiltonian H is the sum of terms involving

the resonator (Hr), the qubit (Hq), and the interaction (HI):

H ¼ Hr þHq þHI. The Hamiltonian of the resonator can

be written in the following form: Hr ¼ Kc:m: þ Krot þ V,
where Kc:m: is the kinetic energy due to the translational
motion of the center of mass, Krot is the rotational kinetic
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energy, and V is the effective potential energy as a function
of the translational and rotational degrees of freedom. In

the following m is the mass of the resonator, ~X the vector
position of the various part of the resonator in a corotating

reference frame with origin at the center of mass, ~R the
coordinate of the center of mass in the laboratory reference

frame, ~~r the vector position of the various part of the

resonator in the laboratory frame, and ~r ¼ ~~r� ~R. The
origin of the laboratory frame is taken to be at the center
of the magnetic sphere (see Fig. 1).

Because of the rigid body properties, the only allowed

relation between ~rð ~X; tÞ and ~X is given by ~rð ~X; tÞ ¼ OðtÞ ~X,
where O ¼ e

P
i
�iðtÞTi [with ðTiÞjk ¼ �ijk] is a rotation ma-

trix and �i 2 ½��;�Þ. We can then define the angular
velocity vectors with components�i ¼ _�i. The motion of
the rigid body is thus completely determined by the 6

degrees of freedom ( ~R; ~�). The inertia tensor of the reso-

nator is Iij ¼
R
dVr�ð ~XÞð ~X2�ij � ~Xi � ~XjÞ. The kinetic en-

ergies are defined with respect to the reference system in
Fig. 1 as Kc:m: ¼ 1

2m
P

i
_R2
i and Krot ¼ 1

2

P
i;jIij�i�j.

The potential V is just the sum of the flux energy due to
the current flowing in the loops and the gravitational
potential energy: V ¼ 1

2

P
3
a¼1 LaI

2
a �mgR1, where the

index a ¼ 1; 2; 3 labels the normal to the plane of the
loop, La is the inductance of loop a, and Ia is the current
flowing in loop a. By the symmetry of the resonator the
mutual inductances between the loops is zero. The currents
are obtained by stationary flux condition enforced by the
Meissner effect:

��að ~R; ~�Þ þ LaIað ~R; ~�Þ ¼ 0; (1)

where ��að ~R; ~�Þ ¼ �að ~R; ~�Þ ��að ~Rð0Þ; ~�ð0ÞÞ is the dif-
ference in magnetic flux threading loop a when the system

is in the configuration labeled by ð ~R; ~�Þ and when the

system is in its initial configuration ð ~Rð0Þ; ~�ð0ÞÞ. Any
infinitesimal change in flux due to an infinitesimal dis-
placement or rotation induces a supercurrent whose action
is to restore the loop’s position or orientation. The stronger
this restoring force is, the higher the oscillation frequency

will be. Denoting ~�a the area vector of loop a, then the flux

through this loop is �að ~R; ~�Þ¼
R
�
~B �d ~�a¼

R
@�a

~A �d~r,
where ~Að~r; ~M; ~RÞ ¼ �0

4�
1

j~rþ ~Rj3
~M� ð ~rþ ~RÞ is the vector

potential generated by a sphere with homogeneous mag-

netization vector ~M calculated at the point ~rþ ~R. From
this one can obtain an expression for the potential energy

V as a function of the coordinates ~� ¼ ðx; y; z; �x; �y; �zÞ.
For example, at first order in ~� ,

��a ¼ �0

4�
f ~Ka � ½~r� ~Rð0Þ � ~�� þ ~Qa � ½ ~M� ~��g; (2)

where the vectors ~Ka and ~Qa are calculated from the
magnetic field and the sphere magnetization. This
leads to a second order expansion of the potential energy
V ¼ 1

2Vij�
i�j.

The effect of the gravity in the potential energy causes a
small shift of the potential minimum. By considering the
magnetization of the sphere to be aligned along the vertical
x direction, zero modes appear from the second order
expansion of the potential energy around its minimum
which ostensibly would allow the system to drift away,
yet stability is restored thanks to higher order contribu-
tions. The ‘‘typical’’ dimensions of the system are radius of
sphere Rs ¼ 10 �m; resonator dimensions ð1; 10; 10Þ �m
with a wire thickness of 0:1 �m, distance between the
center of the sphere and the top of the cluster of loops
1:2Rs. For NbTi nanowires [25] and a sphere made of soft
ferrite NiZn with residual magnetization�0jMj ¼ 0:29 T
[26], the translational frequencies are ð600; 75; 75Þ kHz.
The high frequency motion is a consequence of the high
intensity magnetic field allowed by the choice of the NbTi
superconductor, which, in normal conditions, has very high
critical magnetic field strength BC � 5 T [25]. In the small
oscillations regime, the trapping does not disappear (yet it
become less tight) as the system grows in size, so that, for
example, increasing the combined resonator and sphere
system by a factor of 10 decreases these oscillation fre-
quencies by �10 [27].
To second order perturbation theory (assuming the sys-

tem’s initial configuration is not too far from equilibrium
[27]), the vertical direction (with associated variable R1) is
decoupled from the other degrees of freedom. As we show
below, its frequency is also well separated relative to the
linewidth of the other mode frequencies; hence, it is well

FIG. 1 (color online). Cluster of three insulated superconduct-
ing loops levitating in a magnetic field generated by a magne-
tized sphere with magnetization vector along x̂1. In the
laboratory frame the axes are labeled fx̂jg3j¼1 with angular

coordinates �j around each. The reference system has the center

of the sphere as origin. We depict the magnetic vector field
generated by the spherical magnet and the nearby flux qubit
(which we take to be a 3-junction phase qubit), sitting under the
cluster on a yellow substrate.
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resolved by the qubit coupling. We will consider the
quantized variable corresponding to small deviations

from the initial position along the vertical direction: x̂ ¼ffiffiffiffiffiffiffiffiffi
@

2m!r

q
ðâþ âyÞ. The dynamics of this variable is governed

by an harmonic Hamiltonian whose frequency !r can be
obtained by diagonalizing the potential V.

There are several potential sources of loss which limit
the motional Q for the resonator. The energy dissipated
from the moving resonator due to its action as a dipole
emitter of radiation is negligible. Similarly, coupling to
other phonon motional modes of the resonator is far off
resonant and insignificant. The dominate modes that would
be coupled to are the flexural, radial, and torsional modes
for the horizontally aligned loop. Approximating the loop
as a circle of radius r‘, the lowest frequency mode is the
torsional mode, which is 	tor ¼ 1ffiffi

2
p

�
a
r‘
, where a is the

velocity of sound along the wire [28]. Using r‘ ¼ 5 �m
we find 	tor � 200 MHz, more than 2 orders of magnitude
larger than the resonator frequency. Other sources of dis-
sipation are the viscous drag of flux lines oscillating inside
the pinning wells inside the superconducting wires and
background gas friction. Schilling [7] has calculated the
losses to flux line dragging and damping in a rarefied
gaseous atmosphere for the two-dimensional version of
our resonator with loss rate 
, and for our oscillator fre-
quency the motional quality factor is Q ¼ !r=
 � 1011.
Ultimately, the dominant source of loss is due to inductive
coupling to damped eddy currents in the magnetized
sphere. In order to estimate this effect let us consider
infinitesimal horizontal loops of radius R0 inside the sphere
and placed at a distance h from the bottom of the sphere.
The motional electromotive force induced in each of
such loops is given by j�j ¼ M‘;sðR0; hÞ dIdt , where

M‘;sðR0; hÞ is the mutual inductance between the horizontal

loop of the resonator and the horizontal infinitesimal
loop of the sphere. We can compute the power loss by
assuming the currents inside the resonator have instanta-
neous effects on the sphere, and integrating over the solid
sphere s:

P¼
Z
s

½M‘;sðR0;hÞdIdt�2
�2�R0 dR0dh�

Z
s

½M‘;sðR0;hÞI!r�2
�2�R0 dR0dh;

(3)

where � is the resistivity. A more careful calculation
including retardation effects has a negligible correction
[27]. For a sphere made out of the soft ferrite NiZn with
� ¼ 107 �m, relative magnetic permeability �r ¼ 250,
and �0jMj ¼ 0:29 T [26], the effects due to eddy current
loss give a value of Q ¼ E!r=P ¼ 109, where the ground
state energy E ¼ @!r. Theory has predicted that one can
expect motion Q factors to be a large as 1012 in levitated
systems [22], and experiments with a magnetized sphere
levitating at frequencies of 100–300 Hz in the presence of

superconducting electrodes of a parallel plate capacitor
have observed Q values of up to 106, limited primarily
due to loss from flux pin dragging [29]. The prospect for
ultralarge motional Q at moderately high motional fre-
quencies is one of the primary benefits of our scheme.
We now describe how to cool the resonator by coupling

it to a superconducting flux qubit (see the setup in Fig. 1).
We envisage a three stage process. First, begin with the
resonator placed on the surface near the qubit and at a
temperature above its Tc so it is a normal metal. Next
magnetize the sphere off-line and bring it into the vicinity
of the resonator and proceed to the cool the resonator to
below Tc by bringing it into contact with a cold reservoir.
Finally, raise the sphere which by virtue of the Meissner
effect will lift the resonator above the surface. When the
sphere-resonator complex is high enough off the surface,
the magnetic field due to the sphere will be small enough
(below the critical field strength) at the location of the
superconducting flux qubit on the surface. In practice, a
height of d� 30 �m from the qubit to the center of the
resonator provides for B<0:005T�Bc, with Bc�0:01T
for an aluminum superconducting flux qubit [30].
By denoting the qubit bare frequency with !q and by

introducing a driving by a classical field of frequency !d

detuned from !q by � ¼ !d �!q and with Rabi fre-

quency �, the qubit Hamiltonian in the rotating frame

with frequency !d is Ĥq ¼ � @�
2 �̂z þ @�

2 �̂x. The classical

interaction Hamiltonian for the inductive coupling be-
tween the horizontal resonator loop and the loop of the

flux qubit is given by ĤI ¼ M‘;qI‘Iq, where I‘; Iq are

the currents flowing in that loop and in the qubit and the

mutual inductance is M‘;q ¼ �0

4�∯
d~s�d~s0

r , where d~s and d~s0

are vectors tangent to two points on the path of the two
loops and r is the distance between the points. Because we
are considering small deviations from the equilibrium
initial position, the mutual inductance between the other
loops or due to the angular motion of the resonator is
negligible. We expand I‘ to first order in small
deviations from the initial position using Eqs. (1) and (2).
In the quantized version we also replace Iq with Iq�̂z (see,

for example, [31]). Denoting DIð0Þ¼ @I‘
@x j ~Rð0Þ as the

derivative of the current evaluated at the initial cluster

position, the quantized interaction Hamiltonian is ĤI ¼
@�ðâþ âyÞ�̂z=2, with � ¼

ffiffiffiffiffiffiffiffiffi
2

m@!r

q
M‘;qDIð0ÞIq. By consid-

ering a vertical magnetized sphere with magnetization

j ~Mj, and approximating the resonator loops to be point-
like, one finds that the coupling roughly behaves as

� / Aq

ffiffiffiffiffiffiffi
j ~Mj

p
d3

, where Aq is the area of the qubit loop and d

is the distance between the qubit and the center of the
resonator, which, for this calculation, we supposed to be
much bigger than the other spatial dimensions involved.
The final quantized expression for the Hamiltonian de-
scribing the motion of the cluster in the vertical direction
and its interaction with the qubit is (@ ¼ 1):
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Ĥ ¼ ��

2
�̂z þ�

2
�̂x þ!râ

yâþ �

2
ðâþ âyÞ�̂z: (4)

The coupling strength can be adjusted over quite a large
range (�=2� 2 ½102; 105� Hz) by fixing the distance
(½60; 2� �m) between the center of the resonator and the
qubit, taken to be a circle of radius 5 �m, and the resona-

tor. We choose qubit parameters satisfying
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ �2

p
:¼

!r, which sets the scale for resonant coupling to the
resonator. The resonator and the qubit are generically
coupled to separate thermal baths and interact with each
other through the coupling HI. The joint state of the qubit
and resonator is denoted �̂ and evolves under the following
master equation:

_̂� ¼ �i½Ĥ; �̂� þ L̂�ð�̂Þ þ L̂
ð�̂Þ: (5)

By introducing an energy exchanging, Markovian coupling
between the qubit and a bosonic thermal bath and by

defining the map D½Ô�ð�̂Þ	ð2Ô�̂Oy�fÔyÔ;�̂gÞ, we can
describe the dynamics of the two level system in the limit
!d 
 !r [27] through the following Liouville operator:

L̂�ð�̂Þ ¼ �?
2 ðNq þ 1ÞD½��� þ �?

2 NqD½�þ� þ �jj
2 D½�z�,

where the dissipation factor �? together with an additional
dephasing term depending on an excess dephasing factor
�jj have been introduced, and where the equilibrium pho-

non occupation number is Nq ¼ ðe@!q=kBTq � 1Þ�1, where

Tq is the qubit phonon bath temperature. By tracing out the

qubit we obtain an effective equation of motion for the
resonator. From this we will see that under certain cases we
can obtain a cooling process bringing the cluster towards
its motional ground state.

Under the temperature independent assumptions (� �
�?; !r), and assuming the resonators initial state is a pure
coherent state j�i, the final phonon occupation number for
the resonator is solved for in Ref. [32]:

nf ¼ Nth½� þ ð1� �Þ=ð1þ �eI1=ðNth�

2ÞÞ�: (6)

Here the ‘‘renormalized’’ cooling rate is �ð�Þ¼ i�ð ~Sz1=
�� ~Sz�1=�

�Þ, with �¼�cð0Þ=
, I1 ¼ 2
R1
0 d��~�cð�=
Þ,

~�c¼�cð�Þ=�cð0Þ, 
¼�=!r, and Nth¼ðe@!r=kBTr �1Þ�1,
where Tr is the resonator phonon bath temperature. The

qubit polarization Fourier components, ~Sz1 and ~Sz�1, are
given by the solutions to Bloch equations (for the solution,

see [27]). In the low temperature limit, ð� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nth þ 1=2

p �
�?; !rÞ, which is equivalent to the Lamb-Dicke regime,
one can obtain an effective master equation for the reso-
nator after tracing out the qubit (see Ref. [32] and refer-
ences therein). This gives a new effective resonator
damping rate � ¼ �C þ 
 with �C ¼ Sð!rÞ � Sð�!rÞ,
where Sð!Þ denotes the qubit fluctuation spectrum Sð!Þ ¼
�2

2 Re
R1
0 ei!�d�fh�̂zð�Þ�̂zð0Þi0 � h�̂zi20g and h�i0 denotes

the steady state expectation. The resulting steady state
occupation of the resonator is

nLD ¼ 
Nth=�C þ N0; (7)

where N0 ¼ Sð�!rÞ=�C. Figure 2 shows the final ex-
pected cooled motional Fock number nf in the on resonant

case and for two different qubit bath temperatures. For
comparison, we also plot the dashed line labeled as nLD
obtained from the low temperature theory extrapolated to
high temperature [as given by Eq. (7)]. One can see that for
a large temperature range the expression nLD is valid;
however, above a certain bath temperature cooling is no
longer possible. By coupling the resonator to the qubit, the
system shows a significant enhancement in the cooling rate
relative to letting it cool by dissipative loss alone.
The cooling rate goes from 
=2� ¼ 6 � 10�4 Hz to
ð
þ �CÞ=2�� 1 Hz when in contact with a reservoir at
temperature Tq¼10�2 K and to ð
þ�CÞ=2��1Hzwhen

in contact with a reservoir at Tq ¼ 10�1 K (with the other

parameters fixed as described in the caption of Fig. 2). The
net result is that, even if the resonator is connected to a very
hot thermal bath (Nth�105), one can cool the system to a
final average phonon number nf � 1. As a final note,

performances would improve with increased resonator fre-
quency. This can be obtained by replacing the magnetized
sphere with a magnetic tip [33] with much larger magnetic
field gradients.

FIG. 2 (color online). Cooling performance. Final resonator
phonon occupation number nf as a function of the initial

occupation number Nth for cooling via dissipation. The phonon
number Nth corresponds to the fixed temperature Tr of the
resonator bath. The dot-dashed lines represent the low tempera-
ture limit nLD. When nf is below the identity dotted line,

some cooling is achieved. The system parameters for the
light gray (red) curves are ð!r; �;�?Þ=2� ¼ ð6� 105; 1:6�
103; 105Þ Hz and ð�; �; TqÞ ¼ ð0:5!r;�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2

r ��2
p

; 10 mKÞ.
The dark gray (blue) curves represents a case where the bath
is at higher temperature but the decay rate is smaller:

ð!r;�;�?Þ=2�¼ð6�105;1:6�103;104ÞHz and ð�;�;TqÞ¼
ð0:5!r;�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2

r��2
p

;100mKÞ. The excess dephasing has been
set to satisfy �jj ¼ �?. Inset: Resonator-qubit coupling constant

� as a function of the distance d between the qubit and the center
of the cluster of loops. For large distances the coupling scales as
d�3 following its linear dependency on the mutual inductance
between the horizontal resonator loop and the qubit loop.
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We have presented a mechanical oscillating system hav-
ing very low dissipation utilizing superconducting material
levitated in a vacuum via the Meissner effect. By inductive
coupling to a flux qubit we showed how to cool down the
motion of the system both in high and low temperature
environments using engineered dissipation of the qubit.
The overall performance improves with stronger or higher
gradient magnetic fields, which could be achieved by
replacing the magnetized sphere with other geometric
magnetized objects. It is also possible to use the qubit to
provide an indirect coupling between spatially separated
levitated resonators. This would allow for the generation of
spatially extended (several microns), macroscopic mo-
tional multimode superposition states that could be used
for high precision measurements of force gradients, e.g.,
gravity. For two oscillators coupled by one qubit, one can
use the mechanism in Ref. [34] to generate two-mode
motional Yurke-Stoler cat states, while for a chain of
oscillators and interspaced coupling qubits it is possible
[35] to generate very large spatially extended entangled
motional states.

We thank Gerald Milburn for many helpful comments
and discussions. We also want to explicitly thank the
referees for their constructive and useful comments. This
research was supported by the ARC via the center of
Excellence in Engineered Quantum Systems (EQuS),
Project No. CE110001013.

Note added.—Recently, we became aware of similar
recent work [36] which focuses on the quantum motional
cooling of a microsphere levitated by the Meissner effect.
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