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Time-periodic driving like lattice shaking offers a low-demanding method to generate artificial gauge
fields in optical lattices. We identify the relevant symmetries that have to be broken by the driving function
for that purpose and demonstrate the power of this method by making concrete proposals for its

application to two-dimensional lattice systems: We show how to tune frustration and how to create and
control band touching points like Dirac cones in the shaken kagome lattice. We propose the realization of
a topological and a quantum spin Hall insulator in a shaken spin-dependent hexagonal lattice. We describe
how strong artificial magnetic fields can be achieved for example in a square lattice by employing
superlattice modulation. Finally, exemplified on a shaken spin-dependent square lattice, we develop a

method to create strong non-Abelian gauge fields.
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Topological order and topological insulators [1] are cur-
rently at the center of interest of quantum physics, especially
because of their possible applications in quantum informa-
tion and spintronics [2]. For this reason, there is an ongoing
search for feasible realizations of such systems inside and
outside of solid-state physics. Here, ultracold ground-state
atoms provide a promising playground [3] (although
Rydberg-excited atoms [4], trapped ions [5], and photons
in nanostructured materials [6] offer interesting alternatives).
Typically, topological effects require ultrastrong gauge fields
or spin-orbit-like couplings. There are several ways to
achieve these with ultracold atoms, from trap rotation [7]
and microrotation [8], to Berry phase imprinting [9]. In
optical lattices, combining laser-induced tunneling with
superlattice techniques allows for strong Abelian [10] and
non-Abelian [11] gauge fields and for the realization of
topological insulators [12]. So far, the first lattice experi-
ments led to the creation of staggered flux lattices [13]. Many
other groups follow this direction of research [14].

Recently, there has been a burst of interest in another,
experimentally less demanding, approach, namely periodic
lattice shaking. Sinusoidal shaking leads to a change of
strength or even sign of the tunneling and allows us to
control the Mott-insulator—superfluid transition [15,16]
(for a recent work in hexagonal geometry, see Ref. [17]).
While in the square lattice this introduces neither frustration
nor synthetic gauge fields, in the triangular lattice a sign
change of the tunneling is equivalent to a 7 flux Abelian
field [18]. Such a system mimics frustrated antiferromag-
netism, classical for weakly interacting bosons [19], and
quantum in the hard-core boson limit [20], where it is ex-
pected to exhibit exotic spin-liquid phases [21]. Recently, it
was demonstrated that by breaking temporal symmetries of
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the shaking trajectory, one can create phases of the tunneling
in an optical lattice [22,23] (see also Ref. [24]), and that in
this way tunable Abelian fluxes through triangular plaquettes
may be generated [22]. In this Letter, we discuss nontrivial
generalizations of this approach that involve also ac-induced
tunneling and spinful particles. This allows us to simulate
Abelian and even non-Abelian SU(2) gauge fields in different
lattice geometries, as well as topological insulators. To this,
we employ nonstandard optical lattices, like kagome and
spin-dependent square and hexagonal lattices, and consider
scenarios based on superlattice modulation.

Basic scheme, and temporal symmetries.—We consider a
system of ultracold atoms in a driven optical lattice described
by the Hubbard Hamiltonian A(r) = —3J;;ala; +
3 .vi(t)A; + H,, with (bare) tunneling matrix elements Jij
and annihilation and number operators @; and 7; for particles
(bosons or fermions) at site i; H, collects on-site terms
describing interactions or a weak static potential. The poten-
tial v;(1) = v®(r) + v;hw consists of two parts: a rapid
periodic drive v (1) = v (¢ + T) of frequency w = 27/T
and zero time average (v (1))y = 0 with (-)y =+ [T dr;
and (unlike in Ref. [22]) strong static energy offsets v;iw
with integers v;. For hw > J;; a large energy difference
vijhw # 0 (here and below we use the double-index short-
hand x; — x; = x;;) practically prohibits tunneling between i
and j, unless the resonant periodic driving leads to ac-induced
tunneling (ACT) [25], as it has been observed in recent
experiments [26].

A gauge transformation U = exp[i¥, x;(t)A;], where
Xi(0) = x¢(t) — viwt + y; with hy? (1) = — [{,drv?(7) +
(fhdTv?(7)); and constants 7y,;, leads to the new
Hamiltonian A'(r) = UTA U —in0Ut(d,0), which can be
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approximated by its time average Hegy = —3.;,J ‘l?jff&;f& i+
H, if ho is large compared to both the J ;j and the energy
scales of H,. In this treatment, the initial energy offsets
v;hw enter via the effective tunneling matrix elements
JE = J; (e~ Xl only, and in H all sites appear to
have the same energy. In the undriven system, for »;; # 0,
the large energy difference v;;hiw suppresses tunneling
between sites i and j, and this fact is reflected in H,4 by a
vanishing effective tunneling J lf°jff = 0 at vanishing driving
vt = 0. In turn, finite driving v{; # 0 can establish coher-
ent ACTwith J§T # 0, where the energy difference v, is
bridged by v;; quanta hw.

The leitmotif of the present work is to use this control
scheme to induce Peierls-type phases

0, = arg((e IO TetI),) (1)

that cannot be eliminated globally by choice of gauge,
i.e., by adjusting the constants ;. Such nontrivial phases
correspond to artificial Abelian gauge fields; the gauge-
invariant magnetic flux ¢p € (—, 7] piercing a lattice
plaquette P is (modulo 277) obtained by summing the 6;;
around P. We find that the global reflection symmetry (r)
v?(—t — 7) = v?(t — 7) with respect to a global time 7
(using the choice y; = —v;w7) implies trivial 6;; = 0.
Moreover, if ACT is not involved (vij = 0), 0,-.,4 = 0 fol-
lows already from the local reflection symmetry (r')
vf‘J‘.(—t — T = vt — 7;;) with independent local times
7;; (since y;; = v;joT = 0, independent of 7), or from the
shift antisymmetry (s) v (r — %) = —v?(1) (choosing
v; = 0) [27]. Therefore, ACT significantly reduces the
constraints on the driving function v () for the creation
of artificial magnetic fields. This is nicely exemplified by
recent proposals where already simple sinusoidal forcing
[fulfilling (#') and (s)] leads to magnetic fields when com-
bined with ACT—provided the temporal phase of the driv-
ing can be made site dependent [thus breaking (r)] [29]. In
the following, we consider experimentally feasible scenar-
ios where the whole system is driven in phase such that
both (r) and (s) are broken.

We will later generalize the scheme described in the
preceding paragraphs to the case of spin-1/2 particles
and show how non-Abelian gauge fields can be realized.

Homogeneous forcing and triangular plaquettes.—Let
us consider a homogeneous time-periodic force F(t), such
as an inertial force created by shaking the lattice along a
periodic orbit. For »; = 0, the driving potential v¥(¢) =
—r; - F(r) (with site position r;) results in Peierls phases
0,; that only depend on the vector r;; = r; — r; connecting
the two sites i and j, 6;; = f(r;;). Using Eq. (1), one finds
that f(—r;;) = —f(r;;) and, therefore, homogeneous forc-
ing cannot be used to create artificial magnetic fluxes
through plaquettes with pairwise parallel edges. Since,
however, generically ¢;; depends in a nonlinear fashion
on r;; [f(r;;) is not of the form b - r;;], one can use lattice

shaking to induce a strong and tunable artificial magnetic
flux ¢y through, e.g., a downwards pointing triangular
plaquette V. In the Supplemental Material [30], we analyti-
cally compute this flux for unidirectional forcing. The
inversion of the triangular plaquette V — A reverses the
sign of the flux, ¢, = — ¢y, such that staggered fluxes can
be achieved in the triangular or kagome lattice as shown in
Figs. 1(a) and 1(b). Since these flux configurations stem
from homogeneous forcing they do not break the transla-
tional symmetry of the lattice.

Tuning the staggered flux allows one to continuously
control the degree of frustration in these lattices from none
for zero flux to maximum for 7 flux [corresponding to
ferromagnetic (— J?ff < 0) and antiferromagnetic coupling
(—=J f]ff > 0), respectively]. The fully frustrated regime gives
rise to intriguing physics. For example, the flat lowest band
of the kagome lattice makes the system extremely suscep-
tible towards interaction-driven physics [31]; moreover, the
case of hard-core bosons can be mapped to the spin-1/2 XY
antiferromagnet [20] with possible spin-liquid ground states
in the spatially anisotropic triangular lattice [21] and still
unexplored behavior in the kagome geometry. The ability to
tune continuously between zero and maximum frustration
described here can, thus, be a powerful tool for the adiabatic
preparation of frustrated quantum phases.

The realization of tunable staggered fluxes as shown in
Figs. 1(a) and 1(b) is also interesting in its own right. In the
bosonic case, deviations from 7 flux directly map to tun-
able Dzyaloshinskii-Moriya couplings in the spin picture
(see, e.g., Ref. [32]). Furthermore, for finite flux ¢, = ¢,
the three bands of the kagome lattice feature a complex
band-touching structure whose topology can be controlled
by the driving. This is illustrated in Fig. 2(a) for a lattice
with |J§T| equal to J; (J,) along the horizontal (other)
bonds [see Fig. 1(b)].

Topological and quantum spin Hall insulator—Such
triangular plaquette fluxes can be used to engineer a topo-
logical insulator and a quantum spin Hall insulator.
Consider a spin-dependent hexagonal optical lattice as
sketched in Fig. 1(c), where sites of the A (B) sublattice
are energetically lifted (lowered) by AE/2 for 1 particles,

n Tt

FIG. 1 (color online). (a)—(c) Lattice geometries involving
triangular plaquettes pierced by an artificial magnetic flux
¢var = T ¢ (indicated by + and —): (a) triangular lattice, (b)
kagome lattice with tunneling J; (J,) along the darker horizontal
(lighter diagonal) bonds, and (c) hexagonal lattice with nearest-
neighbor ACT (solid lines) between shallow A and deep B sites
and next-nearest-neighbor tunneling between A sites (dashed
lines). (d) Driving function F(¢) breaking symmetries () and (s).
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FIG. 2 (color online). (a) The topology of band touching for
the kagome lattice can be controlled by anisotropy J;/J, and
plaquette flux ¢». The way and how often the three bands touch is
depicted by the iconographic symbols. (b) Phase diagram of the
hexagonal lattice as in Fig. 1(c) with bare/undriven (next) nearest
neighbor tunneling matrix elements J (J'), subjected to a
symmetry-breaking force F(f) of amplitude o and direction
ep = cos(¢p)e, + sin(pp)e,. White, no Dirac points are
present; gray, a small nearest-neighbor tunneling <<0.02J renders
the physics effectively 1D. The color bar encodes the masses at
two Dirac points, labeled as |m-| = |m~|. In the diagonally
(horizontally) hatched region both masses are positive (negative).
When the masses have opposite sign (unhatched), the system is a
topological insulator (or a quantum spin Hall insulator for
two spin states). Inset: Position of Dirac points in k space for
or = /30, indicating how they move and merge with a.

and vice versa for | particles [33]. Let us focus on non-
interacting 1 particles first. For substantial detuning AE, we
can assume that nearest-neighbor (NN) tunneling (between
A and B sites) is energetically suppressed and that next-NN
(NNN) tunneling is relevant only between sites of the
“shallow” A sublattice. Now assume that the system is
driven resonantly by a time-periodic homogeneous force
of frequency v, ghw = AE (with integer v,z) that both
establishes NN ACT and creates finite artificial fluxes
through the triangular NNN plaquettes of the A sublattice
[“+” and “—" in Fig. 1(c)]. Introducing Pauli matrices
o for the sublattice degree of freedom, the effective
Hamiltonian in momentum representation becomes
Ifleff=zkﬁ,fh(k)&k where d; =(&j\k,é3k) and h(k)=
Re[g(k)]o, —Im[g(k)]o, +g’(k)%(1 +s.0,). Here, s, = 1
and g (k) = —z,st;f,ﬂ exp(ik - 8”) with 8" denoting
the three (six) vectors connecting an A site to its NN
(NNN). Diagonalizing h(k) gives the dispersion relations
e (k) = 1g'(k) = /|g(k)|* + |g'(k)/2[? for the two bands.

Without NNN tunneling (g’ = 0), the system can pos-
sess a pair of band-touching points, i.e., g(k;,) = 0, with
light-cone-like dispersion relation, so-called Dirac cones.
A finite NNN g’(k) will split the bands at these points, and
the Dirac-type dispersion relations found near k; , acquire
finite “masses” m;, = g'(k;,). If these have opposite
sign, the lowest band possesses a finite Chern number
(£1). Then, if the lowest band is entirely filled with
1 fermions, the system is a topological insulator with
quantized Hall conductivity and robust chiral edge modes
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FIG. 3 (color online). Artificial magnetic fluxes ¢ through
the plaquettes of a square lattice (lattice constant d, indicated
by the grid) resulting from superlattice modulation. Stripes or
larger patches with strong, rectified magnetic fluxes can be
achieved. (a),(b) Single-component superlattices with (a) ¢, =
(m/d)(e, + €,/2), V| = 4hw; (b) q,=15(m/d)(e, +e,/2) and
V;=20hw. (c) Two components with g/, =15(7/d)(e,*e,),
V12 =12hw. (d) Like (c), but with wavelengths and amplitudes
doubled. Always ¢, = 0.

[34] (see also Ref. [35]). Repeating the above reasoning for
| particles, for which the role of A and B sites is inter-
changed, one obtains the same result, but with s, = —1
and inverted Hall conductivity. Therefore, filling the lowest
band with both 1 and | particles the system becomes a
quantum spin Hall insulator with opposite chirality for
the two species [36].

As an example, we consider unidirectional forcing
F(t) = F(t)ep, with ep = cos(¢p)e, + sin(pr)e, and
F(?) as depicted in Fig. 1(d) (with T; = T/2 and how =
AE/2, see Supplemental Material [30] for an analytical
expression of the resulting phases). By varying the angle
¢p and the forcing strength o = dFyT,/(2mh) (with lat-
tice constant d), we can access various topological quan-
tum phase transitions, where at least one of the masses
vanishes and changes sign [Fig. 2(b)]. Thus, the lowest
band can acquire a nontrivial Chern number. The inset
shows how Dirac points can be moved and merged.

A way to measure the topological band structure of the
system is given by the method of Ref. [37] based on
semiclassical wave-packet dynamics. It can be applied
thanks to the adiabatic principle for Floquet systems [38]
(see Ref. [39] for its application to the effective
Hamiltonian).

Superlattice modulation and flux rectification.—In latti-
ces with pairwise parallel bonds, such as square lattices,
homogeneous driving v?(t) = —F(t) - r; as considered
in the previous paragraphs cannot create magnetic fluxes.
Therefore, we propose to drive the system via an
oscillating superlattice potential v;(¢) = f()V,(r;) =
FOX, % cos(q, - r — ¢,), where V(r) may be incommen-
surate with the host lattice. The driving function f(¢) =
f(t+T) breaks symmetries () and (s). To achieve a
vanishing mean, (f(f))7 = 0, in an experiment one can
use r-shifted noninterfering standing waves such
that  f()V,cos(q, - r — @) = Vi(t)cos(g, - r — @) +
VI (t)cos(q, - r — @, + m), with V!, V/>0. In Fig. 3,
we show—on the example of a square lattice with a shak-
ing function as in Fig. 1(d) (with T, /T = 0.8)—that, using
different superlattice structures, various configurations of
plaquette fluxes can be engineered [40]. Roughly, the
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FIG. 4 (color online). Non-Abelian SU(2) gauge fields.
(a) Two standing laser waves (with a phase shift of 7/2 and
in-plane polarization as denoted in the figure) create a bipartite
square lattice with alternating ¢ and o~ polarized sites (A and
B) [43]. mp = *1 particles feel an energy difference of =AFE
between A and B sites. (b) The resulting level scheme. A
constant B field realizes an additional on-site energy splitting
AE' (green arrow) such that [AE, 3| = | = AE + AE'| becomes
sublattice dependent. The coupling € of both spin states can be
realized by magnetic or microwave fields. (c) Trace of the
Wilson loop L in parameter space. Deviations from 2 imply
non-Abelian physics [K; = 1.814; outside the white (black)
regions, |trL| < 1.9 ( < 1.99)].

larger the superlattice wavelengths the slower is the varia-
tion of the artificial flux. Therefore, superlattice modula-
tion can generate not only strong magnetic fluxes through
square plaquettes, but also large regions (stripes or patches)
with rectified magnetic field where strong-field quantum
Hall-type physics can be studied. Their inhomogeneity and
finite extent provide a promising test ground for the inves-
tigation of robust edge modes.

Non-Abelian SU(2) gauge fields.—The periodic driving
also permits the creation of arbitrary non-Abelian SU(2)
gauge fields. Consider 1 and | particles (say, mp = *1)
loaded into the spin-dependent square lattice depicted in
Fig. 4(a), where the energy of 1 particles is lifted (lowered)
by AE/2 on A (B) sites, and vice versa for | particles.

These energy shifts are summarized by AEo s,/2, if

we introduce two sets of Pauli matrices s and o for spin
(1 or]) and sublattice (A or B), respectively. Moreover,
uniform microwave and magnetic fields can be employed
to couple the T and | state with a matrix element () and
to produce an additional site-independent energy splitting
AFE', giving the site-independent term AE’s./2 + Qs,.
The absolute value of the total 1-| splitting AE; =
AEo, — AE' is sublattice-dependent [Fig. 4(b)].
Including the NN tunneling J and a spin-independent
sinusoidal drive v®(f) = —r; - Fycos(w?) as it can be
induced by simply shaking the lattice back and forth,
the Hamiltonian reads H = —Z<ij>Jé:r&j +Ziéf[%AE,-sZ +
Qs +v(r)]a;, with &;r = (d}, &;rl)' The transformation
5i = u;ré,», where u; are
2 X 2 matrices,

time-independent unitary
diagonalizes the Hamiltonian on site

with eigenvalues /1A; = 34/AE? + 402, This yields A =
=X ipJblufub; + 3 .bi[hA;s, + v?(1)]b;. The sublat-
tice dependence of u; through AE;/(2()) achieves generi-
cally u;ru ; # 1. As in the derivation preceding Eq. (1), the

unitary transformation exp{—i¥ ;b1 [A;ts, — K, sin(wr)]b;}
with K; =r; - Fy/(hw) leads to a purely Kinetic
Hamiltonian A’ = —Z<,~j>Jb;rWij(t)bj. Here,

c; el()\ —Ajt

i

W, (1) =~ iKysin(wr) dije '
1 w L —i(A—A)r |

ije A=Ayt

and c;; and d;; parametrize uTu For ho > J;;

_d?jez(/\l+)\j)t

ij» We can

approximate H’ by its time average H.p = (H'); =

—d /)Ju tpt M,ij, with the effective tunneling matrix

elements JS = J,f| det((W;;)7)|, and the matrices M,;
<W,])T/w/ det((Wyj)7)l. For Jiff # 0, we require A;p *+

Aiea = v+ with integers v., and for unitarity of M;;,
we require v both either odd or even.

If the so called Wilson loop L, the product of the
matrices M;; around a plaquette, yields not just a simple
phase ¢’?1 describing an Abelian magnetic flux ¢, the
system is subjected to a genuine non-Abelian SU(2) gauge
field. This is equivalent to requiring |trL| < 2, a sine qua
non for the anomalous integer quantum Hall effect [41] and
fractional quantum Hall states with non-Abelian anyonic
excitations [42]. Without driving, |trL| = 2, but including
it, |[trL| < 2 can be fulfilled (see Ref. [30]).

Let us choose ». = 3 and v_ = 1, achieved by AEz =

V4(hw)* + AE3 and Q = V/(hw)* — AE,/4. This leaves

AE,/hw, K, and K, as free parameters (where K, is the
amplitude of the forcing K;; in positive x, y direction). In
Fig. 4(c), we plot the trace of the Wilson loop |trL| versus
K./K, and E,/ho for K, = 1.84 (this value is not crucial
but ensures large y tunneling—see Supplemental Material
[30], where also an analytical expression for the Wilson
loop is derived). There are broad regions where |trL| differs
strongly from 2, proving the presence of a strong artificial
non-Abelian gauge field. Under typical conditions, the
system shows Dirac cones, be it Abelian or non-Abelian.
Similar analytic calculations reveal that L = 1 in a hex-
agonal lattice. This limitation can be overcome by employ-
ing position-dependent coupling via Raman laser mixing,
Q — Q,; = Qe with g the laser wave-vector difference
(see Ref. [30]). This way, the M;; as well as L can be tuned
to be a generic (i X ) SU(2) matrix both in square and
hexagonal lattices. Alternatively, in a hexagonal lattice a
nontrivial Wilson loop can be achieved with NNN
tunneling.

Conclusion.—The creation of artificial Abelian and non-
Abelian gauge fields by means of time-periodic forcing
opens realistic perspectives for experimental studies. This
method offers great flexibility, because it does not involve

145301-4



PRL 109, 145301 (2012)

PHYSICAL REVIEW LETTERS

week ending
5 OCTOBER 2012

the internal atomic structure. For fermions, where only
different internal states interact with each other, this can
be very advantageous for reaching the strongly correlated
regime.
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