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Zonal flows and, more generally, zonal structures are known to play important self-regulatory roles in

the dynamics of microscopic drift-wave-type turbulences. Since toroidal Alfvén eigenmode (TAE) plays

crucial roles in the Alfvén wave instabilities in burning fusion plasmas, it is, thus, important to understand

and assess the possible roles of zonal flow and structures on the nonlinear dynamics of TAE. It is shown

that zonal flow or structure spontaneous excitation is more easily induced by finite amplitude TAEs

including the proper trapped-ion responses, causing the zonal structure to be dominated by the zonal

current instead of the usual zonal flow. This work shows that proper accounting for plasma equilibrium

geometry as well as including kinetic thermal ion treatment in the nonlinear simulations of Alfvénic

modes are important ingredients for realistic comparisons with experimental measurements, where the

existence of zonal fields has been clearly observed.
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Zonal flows and, more generally, zonal structures are
known to play important self-regulatory roles in the dy-
namics of microscopic drift-wave-type turbulences. In fact,
zonal structures have a unique role in the cross-scale
coupling of disparate spatiotemporal scales in burning
plasmas as complex systems [1], for they are predomi-
nantly only radially varying on mesoscales, intermediate
between those of turbulence and macroscopic plasma equi-
librium. In the absence of velocity-space free energy, zonal
structures are linearly stable, due to their intrinsic symme-
try [2], but may be forced driven via nonlinear mode
coupling. In such a case, their damping effect on the
driving modes is proportional to the zonal structures inten-
sity and dissipation rate; i.e., it vanishes in the dissipation-
less limit, which is the relevant case for burning plasmas of
fusion interest. Thus, the self-regulation is essentially
achieved via spontaneous excitations of modulational in-
stabilities above a critical threshold in the driving fluctua-
tion intensity, by which zonal structures act as nonlocal
spectral transfer of energy. Meanwhile, the driving insta-
bilities are themselves scattered by the zonal structures into
shorter radial wavelength sidebands, and, consequently,
into the short-radial wavelength stable domain.

Zonal electric fields and corresponding zonal flows have
been widely measured in experiments and their observed
properties are consistent with the existing general theoreti-
cal framework [3]. Meanwhile, zonal magnetic fields
(zonal currents), predicted by theoretical analyses [3–6],
have been only recently observed in experiments in the
compact helical system (CHS) [7]. Such observation is
important for the implications that zonal magnetic fields

may have in understanding fundamental processes, such as
magnetic field dynamo, as well as for the understanding
of nonlinear dynamics of toroidal Alfvén eigenmodes
(TAEs), which play crucial roles among Alfvén wave in-
stabilities in magnetized plasmas of fusion interest.
The effects of zonal flows [8] and nonlinear mode cou-

plings, due to zero-frequency axisymmetric nonlinear dis-
tortions of equilibrium magnetic field [9] or density [10],
were proposed as possible saturation mechanism in the
nonlinear dynamics of TAEs. More recently, numerical
simulation results have shown that low frequency forced
driven zonal flows may have a role in the nonlinear TAE
saturation [11], but have not observed spontaneous excita-
tion of zonal structures.
In this work, we address the spontaneous excitation of

zonal structures by TAEs, i.e., of both zonal flows and
currents, and show that spontaneous excitation is more
easily induced by finite amplitude TAEs including the
proper trapped-ion responses, causing the zonal structure
to be dominated by the zonal current instead of the usual
zonal flow. Our analysis is carried out assuming a simple
tokamak equilibrium with shifted circular magnetic flux
surfaces; however, results summarized by Eq. (22) are
very general and show that the branching ratio (relative
strength) of zonal flows and currents and the onset condi-
tion for modulational instability crucially depend on
plasma equilibrium and kinetic response. Thus, for realistic
comparisons with experimental observations in toroidal
plasmas, theoretical analyses and numerical simulations
must rely on kinetic descriptions in realistic equilibrium
geometries.
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Here, we adopt the theoretical approach of [4] as well as
[12]. Thus, the field variables �� and �Ak are used to

investigate the nonlinear couplings among the pump TAE,
(!0, k0), the upper and lower TAE sidebands, (!�, k�),
and the zonal mode (!z, kz). Indicating TAE and zonal
mode with the subscripts A and z, respectively, one then
has, for example, �� ¼ ��A þ ��z and ��A ¼ ��0 þ
��þ þ ���. Assuming, for simplicity, that we deal with
high toroidal mode numbers TAE, as those expected in
ITER [13,14], we adopt the well known ballooning-mode
decomposition in (r, �, �) field-aligned toroidal flux co-
ordinates [15]
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Here, (m ¼ m0 þ j, n) are poloidal and toroidal mode
numbers, m0 is the reference poloidal mode number,
nqðr0Þ ¼ m0, qðrÞ is the safety factor, x ¼ nq�m0 ¼
nq0ðr� r0Þ and A0, A�, and Az are the envelope ampli-
tudes of TAE pump, sideband, and zonal mode, respec-
tively, having used

R j�0j2dx ¼ 1 as normalization

condition. The same decomposition of Eqs. (1) and (2) is
assumed for the parallel vector potential.

Considering jk?�ij2�jkz�ij2<�¼ r0=R0<1, with �i

the thermal ion Larmor radius and R0 the torus major
radius, we obtain the vorticity equation of the zonal
mode from [4] [where (r, �, �) flux coordinates were
adopted]
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where !A ¼ vA=ðqR0Þ; thus, Eq. (3) becomes
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Meanwhile, considering the strong electron current screen-
ing effect on scale lengths that are longer than the colli-
sionless skin depth �e ¼ c=!pe, with !pe the electron

plasma frequency, and noting that �e � �i for me=mi �
� � 1, � denoting the ratio between kinetic and magnetic
energy densities, the evolution equation for �Akz or �c z �
!0�Akz=ck0k is �jzke ’ 0, i.e.,

�c z ¼ i
c
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kzk�
!0
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Including the nonlinear correction to the ideal Ohm’s
law, for the ð!�; k�Þ TAE sidebands, the vorticity equa-
tions can be rendered into the following forms [4];
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where
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�0 ¼ 2�þ �0 [16], �0 is the Shafranov shift, and
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[16] and �Ŵðkz; !Þ playing the role of a normalized po-
tential energy, which, besides its obvious dependence on kz
and other parameters characterizing the local plasma equi-
librium, can also depend on the mode frequency, since the
TAE mode structure in the ideal MHD region depends on
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the TAE mode frequency inside the toroidicity induced gap
in the shear Alfvén continuous spectrum. Solutions of
Dð!; kzÞ ¼ 0 are ! ¼ �!TðkzÞ, with the pump TAE fre-
quency given by !0 ¼ !Tðkz ¼ 0Þ.

Combing Eq. (13) with Eqs. (5) and (6) and letting
�i!z ¼ �z yield
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with �T � !TðkzÞ � !0, Eqs. (16) and (17) further
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Equations (19) and (20) then yield the following desired
dispersion relation:

�2
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T ; (21)

i.e., modulational instability will set in when
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Note that, typically, j�T=!0j �Oð�0Þ and jbzð1�
!2

A=4!
2
0Þ=�izj �Oð�3=20 =q2Þ. Furthermore, we generally

have !0@D=@!0 > 0 in the ideal MHD first stability

region for ideal ballooning modes [17]. Thus, Eq. (22)
becomes approximately
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This condition is essentially determined by the sponta-
neous excitation of the zonal field �c z, given by
Eqs. (6) and (20), which dominates over the usual zonal
flow ��z, defined in Eqs. (5) and (19). As to the sign of
�T=!0, Eq. (23), it depends on specific equilibria and
parameters, and must be calculated for individual cases.
Note that, for�T=!0 < 0, Eq. (22) may still be satisfied for
!2

0 >!2
A=4 and small j�T=!0j; however, with ��z domi-

nating over �c z.
In order to give quantitative estimates for the onset

condition of the modulational instability, we recall that
linear TAE analysis gives [17–19]
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Thus, assuming bz&k2��
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the threshold condition for spontaneous excitation
becomes
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having considered the maximum b0 � �0; or, in terms
of �Br=B0,
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This estimate yields j�Br=B0j2th �Oð10�8Þ for some typi-

cal tokamak parameters. This suggests that spontaneous
excitation of zonal structures may be a process effectively
competing with other nonlinear dynamics in determining
the saturation level of TAE modes. Above threshold, one
can estimate

�z ’ ��1=2
0 b1=2z kzvA

��������
�Br

B0

��������; (28)

and bz � �20 for the most unstable growing zonal structures

with �z ’ �1=20 kzvAj�Br=B0j, consistently with Eq. (26).

It is important to note that Eqs. (23) and (24) have been
derived under the condition jk?�ij2 � jkz�ij2 < � ¼
r0=R0 < 1, which is reasonable and usually applies for
TAEs excited by energetic ions in burning plasmas of
fusion interest [14]. For shorter wavelengths, or equiva-
lently � ! 0, both ��z and �c z become increasingly
smaller, as we can readily recognize from Eqs. (19) and
(20), since !2

0=!
2
A � 1=4 ! 0 and �T=!0 ! 0. This is
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due to the cancellation of the Reynolds and Maxwell
stresses, yielding the well known properties of the
Alfvénic state [20–24], which is broken in the present
case by the toroidal geometry of the considered plasma
equilibrium, showing the importance of equilibrium ge-
ometry in determining both linear and nonlinear plasma
dynamic behaviors. Thus, at sufficiently short wavelengths
or in simpler plasma equilibria, Eqs. (19) and (20) must be
suitably modified (see, e.g., [25] and references therein for
a recent discussion of this issue); such analysis, however, is
beyond the scope of the present work and will be discussed
elsewhere. It is also important to note that the zonal struc-
ture is dominated by the zonal current instead of the usual
zonal flow because of magnetically trapped-ion enhanced

polarizability, �iz ’ 1:6q2��1=2k2z�
2
i [2],

j��zj=j�c zj 
 jkz�ij2=j�izj 
 Oð�1=2=q2Þ< 1: (29)

Indeed, if one adopts the MHD model without trapped
ions, so that, �iz ’ k2z�

2
i , and, correspondingly, ��z 


�c z, spontaneous excitation of zonal structures is still
possible, given �T=!0 > 0, i.e., Eq. (23). However, in
the lower half of the TAE frequency gap, !2

0=!
2
A < 1=4,

where TAE are preferentially located when strongly driven
by suprathermal ions [18,19], the threshold condition is
larger than that of Eq. (24). Meanwhile, for �T=!0 < 0,
spontaneous excitation of zonal structures is found only in
the upper half of the TAE frequency gap,!2

0=!
2
A > 1=4, as

noted above; contrary to the case including the proper
trapped-ion responses. All these considerations may pro-
vide a plausible explanation for the simulation results of
Todo et al. [11], where the zonal mode response is found to
be forced driven by TAE rather than spontaneously excited.
The importance of including proper trapped-ion dynamics
for the correct prediction of the spontaneous excitation of
zonal flows by electrostatic drift-type turbulence in toroi-
dal plasmas was pointed out in [26], where a comparative
analysis of slab and toroidal plasma equilibria is discussed.
In that case, the result of adopting a simplified geometry
description was quantitatively different but qualitatively
the same as in the more realistic plasma equilibrium. In
the present case, however, the physics picture changes both
quantitatively and qualitatively. Including kinetic thermal
ion treatment in the nonlinear simulations of Alfvénic
modes [27–29] is, thus, an important ingredient for real-
istic comparisons with experimental measurements, where
the existence of zonal currents of magnetic fields has been
clearly observed [7]. Furthermore, these results demon-
strate the crucial roles played by equilibrium geometry in
determining the nonlinear dynamics of Alfvén modes, with
obvious impact on the fluctuation induced radial transport
of energetic particles and, ultimately, on the fusion
performance.

As a final remark, it is worthwhile mentioning some
further reflection based on the structure of Eq. (22). In the
ideal MHD second stability region for ideal ballooning

modes, which may be of interest for high performance
burning plasma operations, TAE modes generally have
!0@D=@!0 < 0. This means that zonal structures would
be still dominated by zonal currents, but for equilibria such
that�T=!0 < 0. We also note that the structure of Eq. (22)
is specific to tokamaks only through the quantity entering
Eq. (25), �T=!0 and bz=�iz. These quantities regulate the
branching ratio (relative strength) of zonal flows and cur-
rents and the onset condition for the modulational insta-
bility, in other words, the self-regulatory effect of zonal
structures on TAE modes. It, therefore, will be interesting,
by a suitable extension of these terms, to generalize the
present theoretical framework to other toroidal configura-
tions, each maintaining its specificities via the TAE local
dispersiveness and the branching ratio of zonal currents
and zonal flows being set by size of the ratio bz=�iz.
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