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Conventional viscous fingering flow in radial Hele-Shaw cells employs a constant injection rate,

resulting in the emergence of branched interfacial shapes. The search for mechanisms to prevent the

development of these bifurcated morphologies is relevant to a number of areas in science and technology.

A challenging problem is how best to choose the pumping rate in order to restrain the growth of interfacial

amplitudes. We use an analytical variational scheme to look for the precise functional form of such an

optimal flow rate. We find it increases linearly with time in a specific manner so that interface disturbances

are minimized. Experiments and nonlinear numerical simulations support the effectiveness of this

particularly simple, but nontrivial, pattern controlling process.

DOI: 10.1103/PhysRevLett.109.144502 PACS numbers: 47.15.gp, 47.20.Ma, 47.55.N�

In their pioneering work [1], Saffman and Taylor ob-
served that, when a fluid is displaced by another of lower
viscosity in the confined geometry of a Hele-Shaw (HS)
cell, the fluid-fluid interface may become unstable. This
characterizes the viscous fingering (VF) instability which
gives rise to complex interfacial morphologies. This fluid
dynamic problem has been actively studied over half a
century [2], and is an archetype for a wide range of fields,
including research in oil recovery processes [3], fluid
mixing [4], flow in granular media [5], microdischarges
in plasmas [6], and biodynamics of cell fragmentation [7].

The radial flow setup of the Saffman-Taylor problem
[8–11] has provided important insights into fundamental
aspects of branching patterns. It takes place when the less
viscous fluid is radially injected under constant injection
rate, producing fingerlike structures which tend to split at
their tips. Despite their visual appeal and physical rele-
vance, the emergence of a ramified fingering configuration
is not always desirable. For instance, it is well known that
viscous fingering is a major factor in reducing oil recovery
from underground petroleum reservoirs [3]. Therefore, it is
of scientific and technological importance to investigate
how to control, and eventually suppress, the growth of
bifurcated patterns.

Controlling of radial VF has generated considerable
interest in recent years [12–19]. These studies propose
different strategies to avoid the appearance of branched
morphologies. A first set of investigations [12–17] was not
quite able to eliminate the fingers, but replaced typical
convoluted forms by n-fold structures, where sizable fin-
gers persist but do not bifurcate. This process conveniently
determines the number of emerging fingers, keeping them
fixed as the interface evolves. Regardless of whether the
fluids are miscible or immiscible, and if the HS cell is
flat [12–15], this can be accomplished by considering a

time-dependent injection rate proportional to t�1=3. Similar
injection controlling protocols have been proved effective
to dictate the final number of fingers even if the HS cell is
nonflat [16], and also when a gel-like phase is formed at the
interface due to chemical reactions between the fluids [17].
A second line of research [18,19] searches for mecha-

nisms that are capable not only of restraining dense-
branching formation in radial Hele-Shaw cells, but that
also unfavors the establishment of interfacial deforma-
tions. In this context the ultimate goal would be to obtain
front propagation in the form of nearly stable, axisymmet-
ric interfaces. This has been achieved by utilizing a two-
stage piecewise constant injection process which applies a
relatively low injection rate followed by a proper, stronger
injection stage [18]. An alternative suppression method
[19] employs a standard constant pumping rate, but sub-
stitutes the originally rigid HS upper plate with an elastic
membrane. In this case, the onset of instability is deferred
due to the membrane elastic distortions which re-
duce destabilizing pressure perturbations. Finally, a very
recent work in rectangular Hele-Shaw cells addresses the
possibility of controlling VF instabilities using flow ge-
ometry, through the introduction of a gradient in the flow
passage [20].
Despite the ability of existing controlling methods

[18,19] to damp interfacial irregularities, a fundamental
question still remains unanswered: if one wishes to inject a
certain amount of fluid in a given time, what would be the
optimal time-dependent injection rate QðtÞ for which the
perturbation amplitudes could be truly minimized? Con-
sidering the multiplicity of possibilities for time-varying
injection scenarios the response to this pertinent query is
decidedly nontrivial.
In contrast to Refs. [12–19], we present a variational

scheme which allows one to systematically search for the
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particular QðtÞ that leads to the prevention of the radial
fingering instability. The stabilization strategy we propose
does not require unconventional modifications of the tradi-
tional radial HS flow setup, and does not depend on the
material properties of the fluids. It provides a simple and
practical way, derived from first principles, to improve the
efficiency and control of complex fingering phenomena.
Our analytical results are supported by experiments and
nonlinear numerical simulations.

Consider a radial HS cell comprising two close parallel
glass plates of spacing b containing two immiscible, in-
compressible, viscous fluids. The viscosities of the fluids
are denoted as�1 and�2. Fluid 1 is injected into fluid 2 at a
given injection rate Q (area covered per unit time), which
may depend on time. The fluids involved are Newtonian,
and the surface tension between them is �. Linear stability
analysis of the problem [8] considers harmonic distortions
of a nearly circular fluid-fluid interface whose radius
evolves according to Rð�; tÞ ¼ RðtÞ þ �nðtÞ cosn�,
where the time-dependent unperturbed radius is

RðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2
0 þ ð1=�ÞRt

0 Qðt0Þdt0
q

, � represents the azimu-

thal angle, and n are integer wave numbers. The unper-
turbed radius of the interface at t ¼ 0 is denoted by R0. The
Fourier perturbation amplitudes are given by [10]

�nðtÞ ¼ �nð0Þ expfIðn; R; _RÞg; (1)

where

Iðn; R; _RÞ ¼
Z t

tcðnÞ
�ðn; R; _RÞdt0; (2)

with tcðnÞ being the time at which a mode n becomes
unstable [�ðnÞ ¼ 0]. It is assumed that �nðtÞ ¼ �nð0Þ if 0 �
t < tcðnÞ. _R ¼ QðtÞ=2�R is the velocity of the unperturbed
interface (the overdot denotes total time derivative), � ¼
b2�=½12ð�1 þ �2Þ�, and �ðn; R; _RÞ ¼ ð _R=RÞðAjnj � 1Þ �
ð�=R3Þjnjðn2 � 1Þ is the linear growth rate, where
A ¼ ð�2 � �1Þ=ð�2 þ �1Þ is the viscosity contrast. For
unstable situations A > 0.

The mode of maximum growth rate can be obtained by
setting d�ðn; R; _RÞ=dn ¼ 0, yielding

nmaxðR; _RÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

3

�

1þ A _RR2

�

�

s

�
ffiffiffiffiffiffiffiffiffiffiffiffi

A _RR2

3�

s

: (3)

For situations of interest regarding interfacial pattern for-
mation, the approximation used in Eq. (3) is justified by
the fact that in typical experimental conditions [8–13,19]
the parameter � is usually very small (10�12 � � �
10�7 m3=s), so that A _RR2=� � 1 for unstable growth of
the interface.

Our main task is to minimize the perturbations ampli-
tudes (1). This can be accomplished by extremizing the
integral (2). Since nmax is the fastest growing mode, we
focus on minimizing the integral

Iðnmax; R; _RÞ ¼
Z t

0
�ðR; _RÞdt0; (4)

where tcðnmaxÞ ¼ 0 and �ðR; _RÞ ¼ 2A3=2 _R3=2=ð3 ffiffiffiffiffiffi

3�
p Þ �

_R=R only depends on R and _R. Recall that we want to
inject a certain amount of the less viscous fluid by keeping
fixed initial and final radii, during a time interval [0, tf].

Within this context, I in Eq. (4) is the action, while �
defines the Lagrangian of the system. Therefore, we ac-
tually have a variational problem which can be solved by
using the Euler-Lagrange equation

d

dt

�

@�

@ _R

�

¼ @�

@R
; (5)

with fixed endpoints Rðt ¼ 0Þ ¼ R0 and Rðt ¼ tfÞ ¼ Rf.

Substitution of the growth rate � ¼ �ðR; _RÞ into Eq. (5)
leads to a surprisingly simple differential equation €R ¼ 0,
whose solution is

RðtÞ ¼ R0 þ
ðRf � R0Þ

tf
t: (6)

It is worthwhile to note that, if the approximation
A _RR2=� � 1 is not used, the Euler-Lagrange equation
yields a complicated nonlinear differential equation given
by A2R5 €Rþ 2�AR2 _Rþ 4�2 ¼ 0. It turns out that for
typical values of � the solution of this equation is indis-
tinguishable from the straight line solution (6).
Since QðtÞ ¼ 2� _RR, from Eq. (6) we obtain an optimal

injection rate that varies linearly with time as

QðtÞ ¼ 2�
ðRf � R0Þ

tf

�

R0 þ
ðRf � R0Þ

tf
t

�

: (7)

This is a result that could hardly be anticipated: out of a
multitude of possible choices for the time-dependent func-
tion QðtÞ, the one that minimizes the perturbation ampli-
tudes is given by a linearly increasing function as
prescribed by Eq. (7) (see Fig. 1). In contrast to the

FIG. 1 (color online). Sketch of the injection rate as a function
of time for the optimal injection QðtÞ (solid line). The equivalent
constant injection rateQ0 is represented by the horizontal dashed
line. The total volume of injected fluid in the interval [0, tf]

should be the same for both pumping rates.
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previous controlling strategies based on manipulations of
the injection rate [12–17], it is interesting to note that our
optimal pumping rate (7) does not depend on the material
properties of the fluids. We emphasize that the key insight
of our variational scheme is the analogy of the growth rate
to a Lagrangian and the use of the corresponding Euler-
Lagrange equation to find the optimal injection rate. This is
fundamentally distinct from the so-called a variational
‘‘energy method’’ which is utilized to find stability regions
in hydrodynamically unstable flows (Couette flow, Bénard
flows, etc.) [21]. The energy method is much more in-
volved than ours, and has a different physical motivation.

We have not included wetting effects in our study, but it
is known that they can affect the VF instability [22]. A
recent linear stability study [23] included wetting effects
for radial flow in HS cells. From their results one can verify
that wettability tends to decrease the value of the maximum
growth rate, tending to stabilize the system. Besides, we
have found that the fastest growing mode (nmax) does not
vary much when wetting is added, implying that our Eq. (3)
still holds. So, our variational scheme is certainly useful to
search for a proper optimal flow rate when wetting is taken
into account. However, we anticipate that a very compli-
cated differential equation for the ideal RðtÞ is obtained, so
that analytical access to such ideal injection seems un-
likely. We have also verified that, although not being the
exact optimal injection when wetting is considered, our
linearly increasing solution (7) leads to significant mini-
mization of fingering when contrasted with the constant
pumping procedure under the presence of wetting effects.

We proceed by examining both theoretically and experi-
mentally the suitability of the interface stabilization pro-
cess based on the optimal injection rate (7). For a given Rf

and tf, traditional radial VF flow considers insertion of a

specific volume of fluid at constant injection rate

Q0 ¼ �
ðR2

f � R2
0Þ

tf
: (8)

We wish to compare the dynamic behavior and the result-
ing interface morphologies obtained by using the constant
injection rate (8) and the ideal pumping rate (7) at t ¼ tf. A

schematic representation of the behavior of QðtÞ and Q0 as
time progresses is given in Fig. 1. Notice from Eq. (8) that
the relevant set of parameters to be fixed in the controlling
mechanism could be either Rf and tf, or Q0 and tf.

The linear stability results are obtained by utilizing
parameter values that are consistent with those used
in typical experimental realizations of radial HS
flows [8,9,12,13]: R0 ¼ 4:5 mm, b ¼ 1:0 mm, � ¼
25:0 mN=m, �2 ¼ 0:485 Pa s, with �2 � �1. In addition,
we set Rf ¼ 4:8 cm, and tf ¼ 18 s. For the remainder of

this work we focus on the most unstable situation where
A ¼ 1, which is the most challenging to control. In Fig. 2
we plot the integrals given by Eq. (2) at t ¼ tf, for the

optimal injection rate I (solid curve), and for the equivalent

constant pumping situation I0 (dashed curve) as functions
of the wave number n. By inspecting Fig. 2 we observe a
significant reduction in the maximum value of IðnÞ (de-
noted by Imax) for the ideal injection rate case. Since the
perturbation amplitudes �n are related to the exponential of
the integrals I and I0 [Eq. (1)], this implies that the de-
crease in the relative size of the largest fingers is of one
order of magnitude. The physical explanation for the suc-
cess of the ideal stabilization protocol [Eq. (7)] rests on the
fact that initially the injection rate is sufficiently small
(Fig. 1) so that propagation of a sizable unperturbed front
is possible. As time progresses the injection rate increases
considerably, but since it occurs at a large interfacial radius,
injection is no longer able to promote a significant destabi-
lization of the propagating boundary. This means that the
onset of instability is delayed, and when it eventually takes
place disturbances arise with a reduced growth rate.
It is important to address the generality of our linear

stability results. In particular, it would be of interest to
investigate the robustness of our optimal injection strategy
when Q0 or tf are increased. In fact, there is no upper

bound value on Q0 or tf for the minimization of finger

lengths: under the ideal injection process the length of the
fingers will always be significantly smaller than those
produced under constant pumping. Regarding this point,
we have verified that the difference between the maximum
values of the integrals Imax

0 � Imax (see Fig. 2) grows as the

injection rate Q0 or the final time tf are increased. This

issue can be quantitatively expressed in terms of a dimen-
sionless final time, and a suitably defined modified capil-
lary number for the system

Tf ¼
Q0tf

�R2
0

; and Ca ¼ 12�2Q0

�R0�

�

R0

b

�

2
;

where lengths and velocities are rescaled by R0, and
Q0=ð�R0Þ, respectively. Figure 3 depicts the ratio of the
maximum perturbation amplitudes at t ¼ tf, �0=� �
exp½Imax

0 � Imax� as a function of Tf for two values of the
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n
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I

I0

I0
max

I max

FIG. 2 (color online). The solid curve represents the integral I
as a function of mode n, calculated for the optimal injection rate
(7). The dashed curve shows the corresponding quantity I0 for
the constant injection process (8).
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capillary number Ca. From this figure it is clear that the
ratio �0=� grows with increasing Tf and Ca. Of course, for

large Tf and Ca, the final optimal injection interface can

indeed present some undulations. However, the amplitudes
of such perturbations are guaranteed to be considerably
smaller than the ones obtained by the equivalent constant
pumping process. Note that the condition _RR2=� � 1
mentioned at the beginning of the paper, can now be
rewritten as Ca _RR2 � 1. These linear stability predictions
are consistent with our nonlinear simulations.

To validate the linear stability predictions, and also to
access the system’s response at more advanced time stages
of the dynamics, we performed a series of experiments and
simulations. The experimental apparatus consists of a ra-
dial HS cell made of two plexiglass plates 4.0 cm thick and
40.0 cm in diameter, uniformly separated by a narrow gap

of thickness b ¼ 2:0 mm. A low viscosity fluid (water) is
injected through a hole drilled at the center of the bottom
plate, and a mineral oil (Talpa 30/Shell, �2 ¼ 0:45 Pa s) is
used as the high viscosity fluid. The surface tension be-
tween the fluids is of the order of 10:0 mN=m. A precision
computer-controlled injection pump (Teledyne ISCO,
model 500D) allowed both constant and time-dependent
injection rates. Fingering events were video recorded using
a charge coupled device video camera.
Representative experimental morphologies are illus-

trated in Fig. 4. It can be clearly seen that there exist two
distinct classes of patterns. At constant injection rates
[(a) and (c)] typical VF structures presenting decent-sized
interfacial deformations are found. Considering the blunt-
ness of the fingers, we can tell that in (a) we are at the
beginning of the nonlinear stage. On the other hand, the
larger length of the fingers, and the existence of finger tip-
splitting indicate that in (c) we are at the fully nonlinear
regime. However, if the ideal injection rates are employed
[(b) and (d)] considerably less deformed patterns arise.
Fingers are suppressed in (b), and their growth is strongly
restrained in (d).
Finally, Fig. 5 presents boundary integral numerical

simulations for the nonlinear evolution of the interface
considering constant injection (left panel), and ideal injec-
tion (right panel). The same initial conditions have been
used in both runs: a circle modulated by modes 2 to 10,
each one with an amplitude of 0:008R0, and random
phases. The numerical algorithm is described in detail in
Ref. [24]. Figure 5 shows characteristic fanlike patterns
with fingers of large lengths when injection is constant, and
nearly circular shapes when the ideal controlling procedure
is employed. The simulated morphologies resemble those
obtained experimentally in Fig. 4.
These experimental and numerical findings substantiate

our linear stability predictions, supporting the pertinence
and usefulness of the proposed VF controlling process at
nonlinear stages. All this provides a step forward from the
current research on controllability toward ultimate control
of complex VF patterns.

FIG. 4. Typical experimental patterns at time tf ¼ 20 s for
(a) Q0 ¼ 2:08 cm2=s, and (b) its corresponding ideal injection
rate. For (a) and (b) Tf ¼ 65 and Ca ¼ 112. The experimental

shapes shown in (c) and (d) are taken at tf ¼ 6:7 s for Q0 ¼
3:75 cm2=s, and for the equivalent optimal pumping rate, re-
spectively. In (c) and (d) Tf ¼ 40 and Ca ¼ 200.
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0
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20

30
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Ca=130
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FIG. 3. Amplitude ratio �0=� as a function of Tf for Ca ¼ 100,
130. Here �0 (�) denotes the maximum amplitude for constant
(optimal) injection at t ¼ tf.

FIG. 5 (color online). Nonlinear numerical simulations depict-
ing the time evolution of the interfacial patterns for constant
injection Q0 ¼ 1:25 cm2=s (left), and equivalent optimal injec-
tion (right). Here tf ¼ 240 s, Rf ¼ 9:8 cm, and R0 ¼ 1:0 cm.

The interfaces are plotted in intervals of tf=5. Here Tf ¼ 95 and

Ca ¼ 95.
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[24] E. Pauné, Ph.D. thesis, University of Barcelona, 2002.

PRL 109, 144502 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

5 OCTOBER 2012

144502-5

http://dx.doi.org/10.1098/rspa.1958.0085
http://dx.doi.org/10.1098/rspa.1958.0085
http://dx.doi.org/10.1016/0370-1573(95)91133-U
http://dx.doi.org/10.1016/0370-1573(95)91133-U
http://dx.doi.org/10.1063/1.1784931
http://dx.doi.org/10.1137/0143007
http://dx.doi.org/10.1137/0143007
http://dx.doi.org/10.1103/PhysRevLett.57.1718
http://dx.doi.org/10.1103/PhysRevLett.106.194502
http://dx.doi.org/10.1103/PhysRevLett.106.194502
http://dx.doi.org/10.1038/nphys834
http://dx.doi.org/10.1103/PhysRevLett.107.225001
http://dx.doi.org/10.1103/PhysRevLett.107.225001
http://dx.doi.org/10.1103/PhysRevLett.100.258106
http://dx.doi.org/10.1103/PhysRevLett.100.258106
http://dx.doi.org/10.1017/S0022112081003613
http://dx.doi.org/10.1017/S0022112089000911
http://dx.doi.org/10.1016/S0167-2789(98)00097-9
http://dx.doi.org/10.1016/S0167-2789(98)00097-9
http://dx.doi.org/10.1209/epl/i2006-10246-x
http://dx.doi.org/10.1103/PhysRevLett.102.174501
http://dx.doi.org/10.1103/PhysRevE.81.016206
http://dx.doi.org/10.1103/PhysRevE.81.016312
http://dx.doi.org/10.1103/PhysRevE.81.016312
http://dx.doi.org/10.1103/PhysRevE.82.056308
http://dx.doi.org/10.1103/PhysRevE.84.066313
http://dx.doi.org/10.1103/PhysRevE.84.066313
http://dx.doi.org/10.1137/110844313
http://dx.doi.org/10.1137/110844313
http://dx.doi.org/10.1103/PhysRevE.82.067301
http://dx.doi.org/10.1103/PhysRevE.82.067301
http://dx.doi.org/10.1103/PhysRevLett.108.074502
http://dx.doi.org/10.1103/PhysRevLett.108.074502
http://dx.doi.org/10.1007/BF00284160
http://dx.doi.org/10.1007/BF00266474
http://dx.doi.org/10.1017/S0022112084000367
http://dx.doi.org/10.1017/S0022112084000367
http://dx.doi.org/10.1103/PhysRevE.74.025302
http://dx.doi.org/10.1088/0953-8984/20/04/045201
http://dx.doi.org/10.1088/0953-8984/20/04/045201

