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1INLN, Université de Nice-Sophia Antipolis, CNRS, 1361 Route des Lucioles, 06560 Valbonne, France
2NooEL-Nonlinear Optics and OptoElectronics Lab, University Roma Tre, Via della Vasca Navale 84, 00146 Rome, Italy

3Departamento de Fı́sica, FCFM, Universidad de Chile, Casilla 487-3, Santiago, Chile
(Received 3 July 2012; published 1 October 2012)

By sending circularly polarized light beams onto a homeotropic nematic liquid crystal cell with a

photosensitive wall, we are able to locally induce spontaneous matter vortices that remain, each, stable

and trapped at the chosen location. We discuss the dual light-matter nature of the created vortices and

demonstrate the ability of the system to create optical vortices with opposite topological charges that,

consistent with angular momentum conservation, both derive from the same defect created in the liquid

crystal texture. Theoretically, we identify a self-stabilizing mechanism for the matter vortex, which is

provided by the concurrency of light-induced gradients and anisotropy of the elastic constants that

characterize the deformation of the liquid crystal medium.
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Optical vortices [1–3] are receiving considerable
attention in view of their potential applications. We can
mention, for instance, the exchange of angular momen-
tum between light and matter [4], the realization of
optical tweezers [5–7], the implementation of quantum
computational schemes [8], the improvement of astro-
nomical imaging [9], and wave front sensors [10].
Among the different methods envisaged to produce opti-
cal vortices, Marrucci et al. realized ad hoc matter de-
fects with pre-imposed director orientation in liquid
crystal (LC) samples, the so-called q-plates, and demon-
strated that they can efficiently perform the transfer from
spin-to-orbital angular momentum for circularly polarized
beams [11]. This approach exploits the anisotropic nature
of LC media. However, besides anisotropy, which is at
the basis of their large electro-optic response, LCs are
also characterized by their self-reconfiguring capability,
either under the action of light [12] or of electric fields
[13]. In this framework, optical vortices are expected to
derive directly from the appearance of defects in the LC
texture, for instance, under the application of an electric
field, as it was shown for dislocations in cholesteric LCs
[14] and, more recently, for umbilics in homeotropic
nematics [15,16]. In particular, the umbilic defect natu-
rally possesses a vortex-like morphology, making it at-
tractive for realizing the matter template able to impress a
helical structure on an incoming wave front. Nonetheless,
major problems arise when practical implementations are
aimed at, because soft-matter defects are dissipative
structures that obey a complex Ginzburg-Landau equation
(CGLE) and undergo a coarsening dynamics ruled by
their mutual interaction and annihilation [17]. There-
fore, they are unstable (see, e.g., Refs. [2,13]), usually
limited to a single defect pair per sample or a defect-
free sample, and without the possibility of controlled
addressing.

In this Letter, we propose a novel approach for robust
vortex induction, which relies on the association of ne-
matic LCs with a photosensitive substrate, to realize a
homeotropic light-valve geometry. By transforming the
intensity of the incoming light into a voltage that locally
applies only across the illuminated regions, the LC light
valve (LCLV) enables the local induction of stable and
positionally reconfigurable matter vortices, trapped at each
chosen location. These matter vortices, in turn, give rise to
optical vortices via the transfer of spin-to-orbital angular
momentum onto the incoming light. We demonstrate the
ability to control optical vortices of opposite topological
charges that, consistent with angular momentum conser-
vation, both derive from the same matter defect created in
the LC layer. Then, we show the possibility of inducing
adjacent independent vortices, with input beams separated
by a transverse distance of the same order of their size. Our
experimental results are supported by a theoretical expla-
nation of matter vortex stability, which, on the basis of a
modified Ginzburg-Landau model with anisotropic terms
[18], identifies a self-stabilizing and self-centering mecha-
nism. The latter derives from the concurrency of light-
induced gradients and anisotropy of the elastic constants
that describe the deformation of the LC medium. As a
result, equilibrium vortex positions are found near the
center of the illuminated region. Note that, compared to
other techniques, our method to create optical vortices has
several advantages, such as self-induction, reconfigurabil-
ity, and self-centering properties, together with the low
power of the beams that induce the vortices.
Experimental setup.— The setup for vortex induction

is sketched in Fig. 1(a). The LCLV is prepared by interpos-
ing a d ¼ 15 �m layer of nematic LC (MLC 6608 from
Merck) in between two parallel interfaces, a glass plate and
a slab of the transparent photoconductor Bi12SiO20 (BSO),
25� 25 mm2, thickness 1 mm. The interior surfaces are
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treated to obtain the homeotropic anchoring of the LC, that
is, with the nematic director orthogonal to the confining
walls. The outer surface of the photoconductor and inner
surface of the glass plate are uniformly coated with thin
indium-tin-oxide transparent electrodes for applying a
voltage V0 across the cell. The employed LC has a negative
dielectric anisotropy, �a ¼ �k � �? < 0, with �k and �?
the dielectric susceptibility for the electric fields parallel
and orthogonal, respectively, to the molecular director.

When a bias V0 is applied to the LCLV beyond the
Fréedericskz transition voltage of the cell VFT , the mole-
cules tend to reorient perpendicularly to the (low fre-
quency) electric field because of the negative �a; hence,

since ~E ¼ Vs=dẑ (with Vs the voltage at the LC-BSO
interface) is applied along the longitudinal z direction
and the 2� azimuthal degeneracy imposes rotational in-
variance around it, the LC molecules can arbitrarily align
in any direction, spontaneously forming spatial domains
separated by walls, loops, and umbilic defects or vortices
[13]. In the present experiment, we keep V0 & VFT in order
to avoid the spontaneous reorientation while bringing the
molecules close to the transition point. When a light beam
is incident onto the photosensitive wall of the LCLV, due to
the photo-generated charges, there is a slight increase of
the voltage, which effectively drops across the LC region
underneath: the Fréedericskz threshold is locally overcome
and the molecules start reorienting, following the intensity
gradients associated with the Gaussian beam profile.
Moreover, if the input beam is circularly polarized, the

reorienting molecules follow the rotational structure of the
associated electric-field lines. Hence, a vortex-like defect
is spontaneously induced in the matter texture. A sche-
matic sketch of the molecular director in the x-y plane is
shown in Fig. 1(b), while Fig. 1(c) reports an experimental
vortex profile observed under white light illumination and
crossed polarizers.
Vortex induction.—To prove the vortex induction, a

laser beam of wavelength � ¼ 632 nm and power P ¼
0:55 mW is focused on a diameter of 395 �m onto the
photoconductive side of the LCLV. The input beam polar-
ization is taken to be either right-handed (RH) or left-
handed (LH) circular. Typical snapshots of the output
beams observed in the two cases are shown in Fig. 2 for
V0 ¼ 24 V rms at a frequency of 100 Hz. The intensity
profiles, Figs. 2(a) and 2(b), show that the two beams are
Gauss-Laguerre—like modes with complex amplitude of
the form �ðx; y; zÞ ¼ c ðr; zÞ expðikzþm�Þ, with c , k,
and m representing, respectively, the amplitude, the wave
vector, and the topological charge. Here, (r, �, z) are the
cylindrical coordinates associated to (x, y, z). The output
beam polarization for a LH (RH) circular input beam has
been verified to be RH (LH) circular. The topological
charge can be estimated from the interference patterns
displayed in Figs. 2(c)–2(f), for spherical and respectively
planar wave front of the reference beam. The two-arm
spirals in the first case and the two dislocations in
the fringe patterns in the second case are robust and
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FIG. 2 (color online). Experimental observation of optical
vortices induced by left-handed, LH (right-handed, RH), circu-
larly polarized input beams: (a, b) output intensity showing
Gauss-Laguerre beams, (c, d) fringe patterns after interference
with a curved wave front, (e, f) patterns after interference with a
planar wave front; (c, e) m ¼ þ2, (d, f) m ¼ �2; V0 ¼ 24 Vpp,

P ¼ 0:55 mW.
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FIG. 1 (color online). (a) Schematic setup for vortex induction:
a circularly polarized beam is incident on the photoconductive
side of the LCLV; the voltage V0 is such that only the illuminated
region undergoes the Fréedericksz transition; when reorienting,
the LC molecules follow the circular pattern associated with the
electric field and create a matter vortex; this, in turn, induces an
optical vortex at the exit. Matter vortex: (b) schematic sketch of
the molecular director in the x-y plane; the dashed lines represent
the transverse lines of the electric field; (c) intensity profile
measured under white light illumination, crossed polarizers.
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reproducible. The topological charge transferred to the
output beam is m ¼ þ2 (m ¼ �2) for the LH (RH) cir-
cularly polarized input beam. Correspondingly, the spin-
to-orbital angular momentum conversion is consistent with
a q plate with charge q ¼ þ1 [11] and the matter vortex is
an umbilic-like defect with winding numberþ1. Note that
due to the nature of the matter vortex,m ¼ �2 are the only
possible values for the transferred topological charge.

The efficiency of the spin-to-orbital angular momentum
transfer is quantified by recording the power of the output
Gauss-Laguerre mode PGL02 when varying the voltage Vpp

applied to the LCLV and for various input powers. The
measurements are carried out by placing a �=4 wave plate
on the path of the output beam, projecting the circularly
converted RH (LH) for LH (RH) input, and the residual
polarization components into two orthogonal linear polar-
izations, andmeasuring the intensity of the one carrying the
topological charge [11]. The results are plotted in Fig. 3,
where the value of the input power is marked along each
curve. The threshold voltage VFT slightly depends on the
input power. The peak of the response curves corresponds to
a � overall phase retardation between the ordinary and
extraordinary components in the LC layer. Finally, by
launching two adjacent input beams, we verify that two
stable and independent vortices are obtained. Figure 4
shows the vortices induced for two RH [Fig. 4(a)], two
LH [Fig. 4(b)], and LH and RH [Fig. 4(c)] input beams,
respectively. The minimal separation at which the two
vortices can be induced coincides approximately with the
size of the individual input spots.

Mechanism for self-stabilization of the matter vortex.—
To describe the mechanism of the creation and pinning of
matter vortices, we derive a model in the vicinity of the
Fréedericksz transition, a limit where analytical results are
accessible, as nematic LC molecules are weakly tilted from

the longitudinal axis ẑ and backflow effects can be ne-
glected. The dynamical equation for the molecular
director ~n reads [13] �@t ~n¼ K3½r2 ~n� ~nð ~n � r2 ~nÞ�þ
ðK3 � K1Þ½ ~nð ~n � ~rÞð ~r � ~nÞ � ~rð ~n � ~rÞ� þ 2ðK2 �K3Þ �
½ð ~n � ~r� ~nÞð ~nð ~n � ~r� ~nÞ � ~r� ~nÞ þ ~n� ~rð ~n � ~r� ~nÞ�þ
�að ~n � ~EÞ½ ~E� ~nð ~n � ~EÞ�, where � is the LC rotational vis-
cosity, and fK1; K2; K3g are the NLC elastic

constants. Under uniform illumination, ~E ¼ V=dẑ � Ezẑ,
and the homeotropic state ~n ¼ ẑ undergoes a stationary
instability for critical values of the voltage, which match

the Fréedericksz threshold VFT ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�K3�
2=�a

p
. Close to

the transition point, we introduce the ansatz

~n �

uð ~r; tÞ sin
�
�z
d

�
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�
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with ~r ¼ ðx; yÞ the transverse coordinates. By using the

complex field Að ~�; tÞ ¼ ðuþ ivÞ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4d2�=�2ð2K1 � 3K3Þ

p
and scaling the space as ~� ¼ ~r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ðK1 þ K2Þ

p
, after

straightforward calculations we obtain the anisotropic
CGLE [18]

@tA ¼ �0A� jAj2Aþr2
?Aþ �@	;	 �A; (1)

where �0 � ð��aE
2
z � K3�

2=d2Þ=� is the bifurcation
parameter, � � ðK1 � K2Þ=ðK1 þ K2Þ accounts for the
elastic anisotropy, @	 ¼ @x þ i@y, and r2

? � @xx þ @yy ¼
@	@ �	.When neglecting anisotropy,� ¼ 0, the abovemodel

reduces to the CGLE with real coefficients, which admits
stable dissipative vortex solutions with topological charge
(winding number) �1 [2]. The presence of anisotropy
breaks the symmetry, and the þ1 vortex is energetically
favored with respect to�1. Anisotropy, therefore, strongly
influences the system response.
When the illumination has a Gaussian profile, in order to

calculate the nonuniform voltage V across the LC layer, we
have to consider the Laplace equation

r2V þ �a
�?

@2zV ¼ 0; (2)
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FIG. 3 (color online). Efficiency of spin-to-orbital angular
momentum transfer versus experimental parameters. The power
of the output Gauss-Laguerre mode PGL02 is plotted as a function
of the voltage Vpp applied to the light valve and for various input

powers as marked (in mW) on each curve; VFT is the
Fréedericksz transition voltage.
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FIG. 4 (color online). Observed adjacent vortex beams for
(a) right-handed (RH), (b) left-handed (LH), (c) one RH and
one LH input beams; V0 ¼ 24 Vpp, P ¼ 0:55 mW.
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where we neglect the effect of director reorientation.
By taking the boundary conditions Vðx; y; 0Þ ¼ 0 and
Vðx; y; dÞ ¼ Vsðx; yÞ, with Vs the voltage distribution at
the surface, we can find a solution of the form

Vðx; y; zÞ ¼
Z sinhð
qzÞ

sinhð
qdÞVsð ~qÞei ~q� ~rd ~q2; (3)

with 
 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �a=�?

p
. In the limit of slow gradient, we

can approximate sinhð
qdÞ � 
qd and, therefore, take
Vðx; y; zÞ ¼ Vsðx; yÞz=d; that is, we can separate the trans-
verse contribution of the electric field from its vertical one.
We can, then, calculate the pinning force of a radially
symmetric potential on a stationary vortex. The total en-
ergy of the system can be written as W ¼ WD þWINT,
with WD¼ 1

2

R
K1ðr2 � ~nÞþK2ð ~n �r� ~nÞþK3ðr� ~nÞ2 and

WINT ¼ � 1
2 �a

Rð ~n � rVÞ2 the deformation and the inter-

action energy, respectively. By taking as an ansatz for
Vsðx; yÞ a Gaussian profile of width w and amplitude V1,
that is, Vsð ~rÞ ¼ Vs0 þ V1 expð�2r2=w2Þ, and by inserting

it into the expression for WINT, after straightforward
calculations, we find WINT ¼ � �

4 �adV
2
1 ½cosð2�Þ�

expð�4L2=w2Þ þ 1�, where L is the distance of the vortex
core from the center of the radially symmetric potential
and � is the angle of the nematic director in the transverse
plane with respect to the radial lines of the electric field.
Since in our case, �a < 0, the defect has a minimum energy
when � ¼ �=2 [19]; that is, the director is orthogonal to
the field lines [see Fig. 1(b)]. By accounting for this
transverse correction, the bifurcation parameter is modified
as follows:

�ð�Þ ¼ �o þ �ad
2ð1=3� 1=2�2Þj@	Ezj2=� � �0 þ�1;

(4)

which incorporates light-induced gradients, with �0

the same as before and Ez ¼ Vsð~rÞ=d. A circular region
is below or above the Fréedericksz transition threshold
when �0 þ�1 < 0 or �0 þ�1 > 0, respectively.
Moreover, first-order corrections introduce in Eq. (1)
transverse pinning and forcing terms that have the form
of ð1=3� 1=�2Þð@	EzÞ2 �Aþ 2L=�Ez@	Ez [20].

We perform numerical simulations of the modified
Eq. (1), starting from an initial homeotropic condition
A ¼ 0 in the presence of noise and for �0 þ�1 > 0. At
the beginning, we observe the creation of a large number of
vortices, later accompanied by a coarsening evolution
through the annihilation of oppositely charged vortices,
after which a few vortices survive. In the isotropic case,
� ¼ 0 and no transverse pinning terms, we observe that the
vortices move away from the center, then they disappear by
exiting through the edges, and finally there would be no
vortex left in the system. However, when we consider the
joint effects of transverse pinning and anisotropy, � � 0,
the scenario changes. While the negatively charged vorti-
ces continue to move towards the perimeter of the circle,

where they finally vanish, the vortices with positive
charges repel each other and also disappear at the edges,
but one of them remains pinned at an equilibrium position
close to the center, with a small but finite offset.
Figure 5 illustrates the role of anisotropy on vortex

stabilization. The equilibrium position can be interpreted
as resulting from the balance of two forces: a radial force
induced by the parameter gradients, which tend to push the
vortices to the edges of the illuminated region, and a force
induced by the anisotropic deformation, which is opposite
to the light gradients. In Fig. 5(a), the numerically calcu-
lated vortex profile is plotted together with parameter
variation, with the arrows indicating the forces caused by
light gradients and anisotropy respectively. The direction
of the force due to anisotropy depends on the vortex
charge. Because of the balance between the two opposite
forces, the vortex core is at an equilibrium position x0 close
to but not exactly coincident with the center xc of the
illuminated region. Figure 5(b) shows the numerically
calculated potential, in which four equilibrium vortex po-
sitions near the center are visible. An experimental ex-
ample of a stable experimental vortex is shown in
Fig. 5(c). The corresponding intensity profile is plotted in
Fig. 5(d) against the radial coordinate r.
Conclusions.—By using a nematic LC in a homeotropic

LV geometry, we experimentally demonstrated a novel
robust phenomenon of controlled vortex induction, which
is, at the same time, low power, self-induced, self-
stabilizing, and positionally stable. We have highlighted
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FIG. 5 (color online). Effect of the anisotropy on vortex stabi-
lization. (a) Calculated vortex profile; f1 and f2 are the forces
generated by the parameter gradients and anisotropy, respec-
tively; a numerically simulated vortex is shown in the inset.
(b) Pinning potential showing the equilibrium vortex positions
near the center; � is the angle of the nematic director in the
transverse plane. (c) Photograph of a stable experimental vortex;
the cross indicates the center of the illuminated region.
(d) Corresponding intensity profile versus the radial coordinate
r; g.v. stands for gray values on the camera.
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the relative role of the matter vortex and optical vortex.
The latter is mediated by the spin-to-orbital angular mo-
mentum transfer of photons. Besides, we have pinpointed
the theoretical basis of the vortex stability by means of a
generalized Ginzburg-Landau model that takes into ac-
count medium anisotropy.
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