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We solve the long-standing central spin problem for a general set of inhomogeneous bath couplings and

a large class of initial bath states. We compute the time evolution of the coherence of a central spin

coupled to a spin bath by resumming all orders of the time-convolutionless master equation, thus avoiding

the need to assume weak coupling to the bath. The fully quantum, non-Markovian solution is obtained

in the large-bath limit and is valid up to a time scale set by the largest coupling constant. Our result

captures the full decoherence of an electron spin qubit coupled to a nuclear spin bath in a GaAs quantum

dot for experimentally relevant parameters. In addition, our solution is quite compact and can readily be

used to make quantitative predictions for the decoherence process and to guide the design of nuclear state

preparation protocols.
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Since the central spin model was first introduced by
Gaudin [1] several decades ago, it has appeared in diverse
physical settings such as spin dynamics in disordered in-
sulators [2], interacting electrons in metallic grains [3], and
more recently in semiconductor spin qubits [4–13]. It has
also been widely studied in the context of integrable sys-
tems, where close connections to BCS theory and related
theories of pairing forces have been discovered [3,14]. In
addition, several variants of the central spin model have
served as toy models for comparing and contrasting vari-
ous master equation formalisms [15–17].

This broad interest in the central spin model has led to a
plethora of disparate approaches to computing its dynam-
ics. Since its inception, it has been recognized as an
integrable system which admits a solution via Bethe ansatz
[1,3,8]. However, this yields only a very complicated
ground state wave function, and progress in extracting
dynamical information for the central spin has been lim-
ited; to date only modest bath sizes of up to 30 bath spins
have been treated in this manner [8]. Sophisticated numeri-
cal recipes for calculating the central spin evolution have
been developed [5,18,19], but success tends to require
either small baths (tens of spins) or the assumption that
the initial bath state is completely unpolarized. These
requirements are too restrictive for many applications in
the context of III–V semiconductor spin qubits, where the
number of nuclear spins ranges from 104 to 106, and
polarized baths are employed to facilitate qubit operations
and extend coherence times [20,21].

This state of affairs led to the development of several
approximate analytical methods to compute the central
spin evolution. Some of these methods employ an effective
pure-dephasing Hamiltonian which is derived perturba-
tively from the central spin Hamiltonian using a canonical
transformation [7,9,10]. This approach culminated with
a nonperturbative solution of the effective Hamiltonian

dynamics [9,10] and has been successful in describing
spin echo experiments in the case of unpolarized baths
[22]. However, an uncontrolled approximation in the
effective-Hamiltonian derivation makes it unclear when
this approach is valid, and it has yet to be extended to
more general bath states. Methods employing generalized
master equations, on the other hand, offer a controlled
approximation and naturally describe polarized bath states,
but only perturbative treatments have been given so far
[6,11,13,16,17], leading to solutions which are valid only
outside the regime relevant for many semiconductor spin
qubit experiments [22–25].
In this Letter, we solve the central spin problem using

the time-convolutionless (TCL) master equation for a
general set of inhomogeneous coupling constants and a
large set of initial bath states, including both polarized
and unpolarized baths. The TCL equation is an exact
equation for the reduced density matrix of a system
coupled to a bath; although this equation is time local,
it incorporates the full bath dynamics [16,17,26]. With
only a very modest condition on the magnetic field, we
give a closed-form solution describing the evolution up to
a time scale set by the largest bath coupling. We are
therefore presenting an exact solution to the central spin
model as it pertains to gated GaAs spin qubits since this
temporal window contains the entire decay of the electron
spin coherence in the low magnetic field regime where the
central spin model gives a good description of the physics
[27]. Although we will focus on the example of spin
qubits, our results are potentially applicable to any
Gaudin-type central spin problem. This result is also
important to the general study of open quantum systems;
we are not aware of other examples involving a large,
nontrivial and highly non-Markovian bath where an all-
orders resummation of a master equation expansion is
performed.
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The central spin model is comprised of a central spin
coupled to a spin bath via a Heisenberg interaction.
Assuming a nonzero external magnetic field, the
Hamiltonian is

Ĥ ¼ X
k

AkS � Ik þ�Sz þX
k

!kI
z
k; (1)

with S denoting the central spin operator, Ik the bath
spins, Ak the (hyperfine) couplings, and � and !k the
central spin and bath spin Zeeman energies, respectively.
In the context of semiconductor electron spin qubits, the Ak

are determined by the shape of the electron wave function
envelope, but we will leave the Ak completely arbitrary.
We refer to

P
kAkS

zIzk as the Overhauser term, and Vff ¼
1
2

P
kAkðSþI�k þ S�Iþk Þ as the flip-flop term, where S� ¼

Sx � iSy, and similarly for I�k . The total interaction energy
is A � P

kAk, and the number of bath spins appreciably
interacting with the central spin is N � A2=ðPkA

2
kÞ.

Roughly speaking, the bath produces an effective
(Overhauser) magnetic field, the magnitude of which is
controlled by A and the bath polarization, and about
which the central spin precesses, while the Ak set the scale
for the precession of individual bath spins about the
central spin.

The TCL equation is an exact equation for the time
evolution of the reduced density matrix of a system
coupled to a bath [26]. Although this equation contains
full memory of the bath dynamics, unlike equations such as
the Nakajima-Zwanzig equation [6,11,13], it has the at-
tractive feature that it is a time-local ordinary differential
equation. Working in an interaction picture defined with

respect to Ĥ0 ¼
P

kAkS
zIzk þ�Sz þP

k!kI
z
k and denoting

the total density matrix in the interaction picture by �ðtÞ,
the TCL equation has the form

d

dt
P�ðtÞ ¼ X1

n¼1

KnðtÞP�ðtÞ: (2)

The operator P projects the full density matrix onto the
reduced density matrix of the system; its precise definition
will be given shortly. Equation (2) is defined in terms of a
perturbative expansion in Vff which is nominally con-
trolled by the quantity A=�. Ultimately our solution
will not require this expansion to be convergent since we
will sum the entire series, soA=� need not be small. The
nth-order kernel KnðtÞ encapsulates full bath effects aris-
ing from nth-order flip-flop processes in which the central
spin flips n times with one or more bath spins. It can be
expressed as an integral of ordered cumulants involving P
and the interaction picture Liouville operator L (defined by
_� ¼ �iL�); for example, the second-order kernel is
K2ðtÞ ¼ �R

t
0 dt

0PLðtÞLðt0ÞP. The rules for constructing

the higher order kernels can be found in Ref. [26].
We will assume that the initial density matrix separates

into system and bath components, �ð0Þ ¼ �Sð0Þ � �Bð0Þ,
and we will use a set of ‘‘correlated projectors’’ [16], in

which case the action of P on a matrix M is PM ¼P
�TrBf��Mg � 1

N �
��, where the �� are a set of bath

projectors satisfying ���� ¼ ����� and
P

��� ¼ 1,

and N � ¼ TrBf��g. The �� allow us to write the re-
duced density matrix of the system as a sum of independent

degrees of freedom: �S ¼ P
�TrBf���g �

P
��

ð�Þ
S . The

form of the TCL equation we use requires P�ð0Þ ¼ �ð0Þ,
which in turn implies that the choice of the �� will
constrain the possible initial bath states. An appropriate
choice of the �� can either simplify or vastly improve the
convergence of the TCL equation depending on the sym-
metries of the Hamiltonian and initial bath state [13,16];
for now we leave the �� completely general.
Since we want to compute the off-diagonal component

of �SðtÞ (coherence function), we multiply Eq. (2) by Sþ
and trace over both system and bath to obtain

_�S;�þðtÞ ¼ TrSfSþ _�SðtÞg ¼
X1
n¼1

TrfSþKnðtÞP�ðtÞg: (3)

The summand on the right-hand side of this equation
is comprised of integrals of terms with the general struc-
ture TrfSþL1PL2P . . .LrP�ðtÞg, where Li represents a
string of Liouville operators Lðti1ÞLðti2Þ . . . . If one as-

sumes that �� is such that bath correlators of the type
TrBf��I

�
‘1
I�‘2 . . .g vanish unless they contain equal num-

bers of raising and lowering operators, then it is straight-
forward to show [29] that in the case of the central spin
model (1), such terms factorize:

TrfSþL1PL2P . . .LrP�ðtÞg

¼ X
�

1

N r
�

�ð�Þ
S;�þðtÞ

Yr
i¼1

TrfSþLiS
���g: (4)

Since every term on the right-hand side of Eq. (3) factor-
izes in this way, we can expand the left-hand side as

_�S;�þðtÞ ¼
P

� _�ð�Þ
S;�þðtÞ and separately equate each term

of the �-sum. The resulting set of equations is readily
solved:

�ð�Þ
S;�þðtÞ ¼ �ð�Þ

S;�þð0Þ exp
�X

n

Gð�Þ
n ðtÞ

�
; (5)

where Gð�Þ
n ðtÞ � R

t
0 dt

0TrfSþKnðt0ÞS���g.
To calculate Gð�Þ

n ðtÞwe must first compute correlators of
the type TrfSþLS���g where L is an arbitrarily long
string of Liouville operators. Restricting ourselves for
simplicity to the case !k ¼ !, we find [29]

TrfSþLðtb1Þ...Lðtb2qÞS���g

� 1

4q
e�i��

P
2q
i¼1

ð�1Þbi tbi
Xq
k¼0

q

k

 !
TrBfðhþh�Þk��ðh�hþÞq�kg:

(6)
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We have defined the operators hj � P
‘A‘I

j
‘ and frequency

�� � ��!þ TrBfhz��g=N �, and we have assumed
that ½hz;��� ¼ 0. The latter condition ensures that the
correlator vanishes for odd numbers of Liouville operators,

which in turn implies that Gð�Þ
n vanishes for odd n. There

are two approximations being made in Eq. (6). The first
approximation assumes t � 1=Amax, where Amax 	A=N
is the largest coupling, and this leads to the time depen-
dence appearing only as a phase factor in Eq. (6). For spin
qubits in GaAs with N ¼ 106, 1=Amax can be on the order
of 10 �s, long enough to capture the full decay of the
electron spin coherence for experimentally relevant values
of the magnetic field [22–25]. For comparison, we can also
consider spin qubits in Si [30], in which case 1=Amax is on
the order of 250 �s.

If this were the only approximation, then the right-hand
side of Eq. (6) would have an additional sum over permu-
tations of the tbi , but only a certain subset of these permu-

tations were kept in Eq. (6). Retaining only this subset
amounts to keeping the leading order terms in the��t
1
limit at each order of the TCL expansion. To illustrate the
nature of this RPA-like approximation, we consider its
effect on the lowest-order terms. If we kept all permuta-
tions, then the second-order term would have the form

Gð�Þ
2 ðtÞ 	 �2

�uðt;��Þ while the fourth-order terms stem-

ming from the q ¼ 2, k ¼ 0, 2 cases in (6) would have

the form Gð�Þ
4 ðtÞ 	 �4

�vðt;��Þ where �� � Affiffiffi
N

p
��

and

uðt;��Þ ¼ i��t þ e�i��t � 1, vðt;��Þ ¼ ��2
�t

2 �
4i��t � ð6 þ 2i��tÞe�i��t þ 6. The RPA-like approxi-
mation amounts to taking u ! i��t and v ! ��2

�t
2.

Self-consistency of the approximation requires �� � 1,
which imposes a lower bound on the magnetic field (cor-
responding to a few mT for gated dots in GaAs). The
necessity for �� � 1 can be seen from u and v by noting
that we can only neglect the linear (in t) term in v if it is
small compared to the linear term in u. Later on, we will
see that this approximation captures the envelope of the
coherence function, and we will also find that we can relax
this approximation to a large degree by keeping the full

form of Gð�Þ
2 ðtÞ.

With Eq. (6) in hand, it is straightforward to assemble

these correlators into the function Gð�Þ
n ðtÞ using the rules

for constructing the TCL ordered cumulants [29]:

Gð�Þ
n ðtÞ ¼

�
it

4��

�
n=2 X

fqig2P ðn=2Þ

1Q
r
i¼1 qi!

ð�1Þrþ1

rN r
�

�Yr
i¼1

Xqi
k¼0

qi

k

 !
TrBfðhþh�Þk��ðh�hþÞqi�kg:

(7)

In this expression, fqig 2 P ðn=2Þ means that fqig is
an ordered integer partition of n=2, with r being the
number of qi comprising the partition [31]. To evaluate

this expression,wemake perhaps the simplest choice for the
projectors: �� ¼ �� ¼ j�ih�j, where j�i � N

k jIk; m�
k i

is a product of eigenstates of the Izk [IkðIkþ1Þ and m�
k are

eigenvalues of I2k and Izk]. In this case, N � ¼ 1. This
particular choice is well suited to applications pertaining
to spin qubits [6,11,13]. With an initial bath density matrix
of the form �Bð0Þ ¼

P
����j�ih�j, it is possible to per-

form the various sums in (7) despite their complexity [29],
and we find in the limit of large N that the coherence
function WðtÞ � ~�S;�þðtÞ=~�S;�þð0Þ in the Schrödinger

picture is

WðtÞ ¼ X
�

���ðdþ� � d�� Þeið�þhz�Þt

dþ� e�itðdþ��d�� Þ=4�� � d�� eitðd
þ
��d�� Þ=4��

; (8)

where hz� � TrBf��h
zg is the Overhauser field associated

with the state j�i, d�� �h�jh�h�j�i¼P
‘A

2
‘½I‘ðI‘þ1Þ�

m�
‘ ðm�

‘ �1Þ� quantifies transverse fluctuations of this field,
and �� � ��!þ hz� is the difference between the ef-

fective Zeeman energy of the central spin (�þ hz�) and the

bath spin Zeeman energy (!). Equation (8) is the main
result of this Letter; it describes the envelope of the coher-
ence function of the central spin for an arbitrary set of
couplings Ak and for a large set of initial bath states up to
time t & 1=Amax.
As a first example, we consider the case of a uniformly

polarized bath [32] with all bath spins having the same
total angular momentum I, and for which hz� is the same for

all � [6,11]. Writing hz� ¼ AIp and�p¼��!þAIp,

where p ¼ 1
NI

P
����

P
km

�
k is the average polarization of

the bath, with p ¼ 0 denoting an unpolarized bath and
jpj ¼ 1 maximal polarization, we find

WðtÞ ¼ peið�þAIpÞt

p cosð2Ipt�p
Þ � ip2

? sinð2Ipt�p
Þ ; (9)

with p2
? � I þ 1� 1

NI

P
����

P
kðm�

k Þ2 (for I ¼ 1=2,

p2
?¼1), and �p � 4N�p=A2. Setting p ¼ 0 in (9) yields

the zero-polarization result, WðtÞ¼1=ð1�2iIp2
?t=�pÞ,

obtained in previous works [9,10,13] using less rigorous
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FIG. 1 (color online). Coherence function [Eq. (9)]. Left panel:
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methods. The left panel of Fig. 1 shows that the decoher-
ence rate increases with increasing I due to a correspond-
ing increase in the number of bath degrees of freedom. For
electron spin qubits in a GaAs nuclear spin bath (I ¼ 3=2)
where the magnetic field is typically on the order of
100 mT [23] so that A=� � 30 and �0 � ð2=15ÞN=A,
it is clear that the coherence decays almost completely
before time t ¼ 1=Amax � N=A is reached. The right
panel of Fig. 1 depicts the extent to which the decoherence
time increases with increasing bath polarization, a well
known effect which can be understood in terms of a
reduction of phase space for flip-flops. It is also evident
that positive net polarization leads to longer decoherence
times compared with negative polarization, since for the
latter the decrease of j�pj facilitates virtual flip-flops. Our
results provide quantitative predictions for the enhance-
ment of decoherence time resulting from bath polarization.

A salient feature of the uniform-polarization result,
Eq. (9), is that it depends on the couplings only through
the quantities A and N. This implies that any set of
couplings which yield the same values of A and N will
give rise to the same central spin evolution for t � N=A.
For example, this evolution should be reproduced by a
model in which all the couplings are equal, Ak ¼ A=N,
the so-called ‘‘box’’ model, which is exactly solvable (see,
e.g., Ref. [13] for the solution in the case of a polarized
bath). A comparison of Eq. (9) with the exact box model
solution is shown in the left panel of Fig. 2, and it is evident
that the two solutions agree very well. This insensitivity to
the particular values of the Ak on time scales t � N=A
was anticipated in Ref. [13] based on energy-time uncer-
tainty; here, we have given a direct proof of this result, and
we show below that its validity requires uniform polariza-
tion. The exact box model solution is not known to have a
closed form, so the fact that Eq. (9) constitutes a very good
approximate closed-form solution is an added bonus of the
present Letter [Eq. (8)].

The right panel of Fig. 2 reveals that Eq. (9) does not
capture a high-frequency, small-amplitude modulation ex-
hibited by the exact box model solution [13]. However, it
turns out that it is easy to correct for this by relaxing the
RPA-like approximation at the second order of the TCL

flip-flop expansion, in which case one finds that Gð�Þ
2 ¼

1
4�2

�
½i��tþ e�i��t � 1�ðdþ� þ d�� Þ, leading to the modi-

fied coherence function ~W¼Wexp½ðe�i�pt�1Þ=ð�p�pÞ�.
This modified function reproduces very well the small
modulations as is evident in the right panel of Fig. 2. The

condition �� ¼ Affiffiffi
N

p
��

� 1 ensures that higher-order cor-

rections to these modulations are negligible.
We stress that the coherence function given in Eq. (8)

can describe more general bath polarization states. To
illustrate this, we consider a simple example of a nonun-
iformly polarized initial bath state where the bath spins
possess an average polarization which depends linearly on
their coupling: hmki ¼

P
����m

�
k ¼ NIpAk=A. This de-

scribes a bath configuration where the spins closest to the
central spin are more polarized, while those further away
are less polarized. In the case of spin qubits in quantum
dots, this is qualitatively a physically plausible configura-
tion since the nuclear spins are typically polarized through
manipulation of the central electron spin [20,21,33–36].
This time, the coherence function computed from Eq. (8)
depends not only on

P
kAk and

P
kA

2
k, but also on

P
kA

3
k,

meaning that the result now depends on details of the
distribution of the Ak. Assuming the Ak are distributed in
accordance with a two-dimensional Gaussian wave func-
tion of the central spin electron, and taking the continuum

limit (e.g.,
P

kfðAkÞ !
RAmax

0 �ðAÞfðAÞdA with �ðAÞ ¼ N
2A

and Amax ¼ 2A
N ), we obtain

WðtÞ ¼ peið�þAIpÞt

p cosð8Ipt3�p
Þ � 3i

4 p
2
? sinð8Ipt3�p

Þ : (10)

Figure 3 shows that while for lower bath polarizations this
result is similar to what we found in the uniform-
polarization case, for larger polarizations, the differences
between the two solutions become quite pronounced. This
illustrates how our results can be used to distinguish
between different narrowed polarization distributions
produced using empirical nuclear state preparation
schemes [20,21,34,35] which are not yet understood
microscopically.
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FIG. 2 (color online). Left panel: Coherence function from
Eq. (9) (blue, dashed) vs exact box model solution from
Ref. [13] (red, solid) with I ¼ 1
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Right panel: Zoom in of left panel with modified coherence
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In conclusion, we have presented a nonperturbative
solution to the central spin problem. Our solution is an
elegant, closed-form expression which is valid for an arbi-
trary set of couplings to the spin bath and for a large class
of initial bath states. In the context of GaAs spin qubits, our
result solves completely the pure-hyperfine decoherence
problem and can be used to quantitatively predict decoher-
ence times and to better understand nuclear state prepara-
tion protocols.
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[10] Ł. Cywiński, W.M. Witzel, and S. Das Sarma, Phys. Rev.

B 79, 245314 (2009).
[11] W.A. Coish, J. Fischer, and D. Loss, Phys. Rev. B 81,

165315 (2010).
[12] B. Erbe and J. Schliemann, Phys. Rev. Lett. 105, 177602

(2010).
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