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We show that spin-orbit coupling (SOC) gives rise to pairing instability in a highly polarized two-

dimensional Fermi gas for an arbitrary interaction strength. The pairing instability can lead to a Fulde-

Ferrell-Larkin-Ovchinnikov-like molecular state, which undergoes a first-order transition into a pairing

state with zero center-of-mass momentum as the parameters are tuned. These pairing states are metastable

against a polaron state dressed by particle-hole fluctuations for small SOC. At large SOC, a polaron-

molecule transition exists, which suggests a phase transition between the topological superfluid state and

the normal state for a highly polarized Fermi gas in the thermodynamic limit. As polarization in a Fermi

gas with SOC is induced by the effective Zeeman field, we also discuss the influences of the effective

Zeeman field on the ground state of the system. Our findings may be tested directly in future experiments.
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Spin-orbit coupling (SOC), a non-Abelian gauge field,
has been shown to play a fundamentally important role in
many interesting systems in condensed matter physics,
e.g., topological insulators [1], quantum spin Hall materi-
als [2], etc. The recent development of a synthetic gauge
field, SOC in particular, in ultracold atoms has stimulated a
tremendous amount of interest in the study of the effects of
SOC within these systems [3–5]. By breaking the inversion
symmetry, the SOC may induce novel quantum phases,
e.g., the unconventional superfluidity in an ultracold Bose
gas [6,7], or the topological superfluid phase (TSF) in a
polarized Fermi gas with s-wave pairing order [8–13].
Notably, in the latter case, Majorana zero modes can be
stabilized at the center of vortex excitations, which may be
used as resources for topological quantum computation
[14,15].

For a polarized two-dimensional (2D) Fermi gas with
SOC, a peculiar behavior is the existence of the pairing
instability in the large polarization limit [10,16,17]. This is
in stark contrast to the case without SOC, where the pairing
state becomes unstable against a normal gas beyond the so-
called Chandrasekhar-Clogston limit [18]. The persistence
of the pairing instability can be attributed to the breaking of
inversion symmetry, which modifies the topology of the
Fermi surface and renders singlet s-wave pairing possible
in the large polarization limit [10]. This can lead to the
interesting scenario where pairing exists in the presence of
a single Fermi surface, i.e., when the chemical potential
lies in the gap between the two helicity bands. In this case
the system is in the TSF phase. For a uniform 2D gas, the
TSF phase is stable in the large polarization limit on the
mean-field phase diagram [19]. However, it has been
shown theoretically [20,21] and demonstrated very re-
cently in experiments [22], that in the absence of SOC

the ground state of a highly polarized 2D Fermi gas is a
polaron state in the weak-coupling limit, i.e., an impurity
atom dressed by particle-hole fluctuations of the Fermi sea.
In the presence of SOC, naturally one expects the interplay
of SOC, pairing, and fluctuation leads to rich physics. In
particular, it is interesting to study the stability of the TSF
phase against a normal state with particle-hole fluctuations
in a highly polarized Fermi gas.
In this work, we investigate a spin-orbit coupled 2D

Fermi gas in the large polarization limit. In the presence
of SOC, the spin polarization can be induced by an effec-
tive Zeeman field, which is tuned by adjusting the laser
parameters in a typical scheme for synthetic SOC [3,4]. To
model the ground state of the system, we adopt variational
ansatz states following Refs. [20,21,23,24], which effec-
tively project the wave functions into the subspace of the
large polarization limit. We then study in detail the prop-
erties of both the molecular state and the polaron state
in the presence of an effective Zeeman field. We find
that under appropriate effective Zeeman fields the SOC-
induced pairing instability leads to a Fulde-Ferrell-Larkin-
Ovchinnikov (FFLO)-like pairing state [25] with nonzero
center-of-mass momentum in the weak-coupling limit. The
FFLO-like pairing state can undergo a first-order transition
into a pairing state with zero center-of-mass momentum as
SOC increases or as the interaction is tuned. For small
SOC, we find that the energy of a polaron state is always
lower than that of the molecular pairing state. However, a
polaron-molecule transition exists for sufficiently large
SOC. This suggests a phase transition between the normal
state and the TSF state in the thermodynamic limit. Finally,
we show that the boundaries between the different states
can be shifted as the effective Zeeman field increases. With
progress in the experimental investigation of 2D Fermi
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gases [22,26] and the recent realization of SOC in a degen-
erate Fermi gas [27], our study has interesting implications
for future experiments.

Model.—We consider the system in the large polariza-
tion limit induced by an effective Zeeman field h. In
the presence of Rashba SOC, the Hamiltonian can be
written as

H ¼ X
k;�

�kc
y
k;�ck;� þU

S

X
k;k0;q

cyk;"c
y
k0;#ck0þq;#ck�q;"

þX
k

ð�ei’kkcyk;"ck;# þ �e�i’kkcyk;#ck;"Þ

þ h
X
k

ayk;#ak;#; (1)

where �k ¼ @
2k2=2m, the pseudospin of the atoms � ¼

ð"; #Þ, � is the SOC strength, ’k ¼ argðkx þ ikyÞ, and S is

the quantization volume in two dimensions. Here we only
consider the case where atoms of different spin species
have the same mass m. The bare s-wave interaction rate U
should be renormalized following the standard relation in
two dimensions [28],

1

U
¼ � 1

S

X
k

1

Eb þ 2�k
; (2)

where Eb is the binding energy of the two-body bound state
in two dimensions in the absence of SOC. For cold atom
systems, this two-body binding energy can be tuned, for
instance, via the Feshbach resonance technique.

Molecular state.—We first investigate the pairing insta-
bility in the presence of SOC, and the properties of the
resulting molecular state. Consider a variational ansatz of
molecular state with center-of-mass momentum Q:

jMi ¼ X
k
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where jN � 1i represents a Fermi sea with N � 1 spin-up
atoms. Due to the SOC, we now have triplet-pairing com-

ponents f�""
k; �

##
kg in addition to the singlet-pairing wave

function �"#
k. The momentum subscripts in the wave func-

tions are constrained by Pauli blocking, such that k > kF
for �"#

k and �""
k, and jQ� kj> kF for �""

k, where kF is the
Fermi wave vector given by EF ¼ @

2k2F=2m, and EF is the
Fermi energy of spin-up fermions. To focus on the prop-
erties of the pairing instability, we neglect the particle-hole
fluctuations here and only consider the bare molecular
state in Eq. (3). Note that by taking the ansatz in Eq. (3),
we have effectively projected the ground state into a sub-
space that corresponds to the large polarization limit where
few spin-down atoms coexist with a polarized Fermi sea of
spin-up atoms. Terms with further spin flips are suppressed
by the effective Zeeman field h and are projected out. Here,
to be of more experimental relevance, we fix the effective

Zeeman field, which typically corresponds to fixing the
laser parameters for synthetic SOC. As a result, the popu-
lation of the spin-down atoms in the ground state fluctuates
slightly around unity, given appropriately chosen Zeeman
field strengths.
Minimizing the functional hMjðH� EMÞjMi, we get a

self-consistent equation for the ground state energy EM of
the molecular state, relative to the Fermi sea of N spin-up
atoms [29]:

1

U
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��1
;

(4)

where �ðxÞ is the Heaviside step function. To find the
molecular ground state, we should further minimize the
energy solved from Eq. (4) with respect to the center-of-
mass momentum Q. In the absence of SOC, the center-of-
mass momentum of the molecular state is zero for large Eb,
becomes finite, i.e., FFLO-like, at Eb ¼ 2EF through a
second-order transition, and approaches the Fermi wave
vector kF at Eb ¼ 0:5EF where the bound state merges into
the continuum [20]. Importantly, there is no pairing insta-
bility for Eb < 0:5EF without SOC in the large polariza-
tion limit. We will see that this simple picture is drastically
modified by SOC.
We numerically solve Eq. (4) and minimize the solution

with respect to the center-of-mass momentumQ for a fixed
Zeeman field h ¼ 0:5EF. The evolutions of the molecular
energy as well as the center-of-mass momentum Q are
shown in Fig. 1. Compared to the case without SOC, an
outstanding difference is that the pairing instability persists
into the weak-coupling limit even with infinitesimally

FIG. 1 (color online). (a) The molecular energy ðEM � hÞ=EF

as a function of Eb=EF for different SOC strengths and a fixed
effective Zeeman field h=EF ¼ 0:5: �kF=EF ¼ 0 (thin solid
line), �kF=EF ¼ 0:2 (thin dashed line), �kFEF ¼ 0:6 (bold
solid line), �kF=EF ¼ 1 (bold dashed line). (b) Evolution of
the center-of-mass momentum of the molecular ground state for
different SOC strengths and a fixed effective Zeeman field
h=EF ¼ 0:5.
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small SOC. The bound state energy approaches a SOC-
dependent asymptotic value in the weak-coupling limit and
never crosses the continuum threshold EM ¼ h� �2k2F=
2EF. This is consistent with the previous many-body cal-
culations, where the superfluid order parameter does not
vanish for any polarization in the presence of SOC
[10,16,17]. The pairing instability in the large polarization
limit is actually a consequence of the combined effects of
the SOC and the effective Zeeman field. While SOC breaks
the inversion symmetry and mixes the spins into different
helicity bases, the effective Zeeman field breaks the time
reversal symmetry and opens a gap in the energy spectrum.
As the spins are mixed in the lower branch, s-wave pairing
is possible even in the large polarization limit [10].
Numerically, the pairing instability shows up as a singu-
larity in Eq. (4), when Eb ! 0, similar to the behavior of
the gap equation in the many-body case. From the many-
body mean-field calculations, the ground state of a uniform
2D Fermi gas is a TSF phase in the large polarization limit
[19]. Apparently, the pairing state that we discuss here is
related to the TSF phase in the thermodynamic limit when
a finite density of spin-down atoms are present [16].

Another important observation is that, for small
SOC, the pairing instability leads to a FFLO-like pairing
state with a finite center-of-mass momentum Q whose
magnitude approaches the Fermi wave vector kF in the
weak-coupling limit. This is shown in Fig. 1(b). As the
interaction is tuned toward the strongly interacting region,
the center-of-mass momentum becomes smaller and drops
to zero at a critical Ec

b, where the system undergoes a first-

order transition to a pairing state with zero center-of-mass
momentum. The critical Ec

b for this first-order transition is,

in general, a function of the SOC strength and the effective
Zeeman field h. As demonstrated in Fig. 2(a), for small h,
Ec
b decreases monotonically as the SOC strength becomes

larger, and eventually vanishes at a critical SOC strength
�c. Beyond�c only pairing states with zero center-of-mass
momentum are stable for arbitrary interaction strength. For
larger h, the dependence of Ec

b on the SOC strength be-

comes nonmonotonic. This suggests that the pairing state

becomes non-FFLO-like in the weak-coupling limit for
large h, and that one may encounter up to two first-order
transitions if the interaction is tuned with fixed SOC and
Zeeman field. Hence for a fixed Zeeman field, the stability
of the FFLO state is affected by SOC in two contrasting
ways: while the competition between the FFLO state and
the pairing state with zero center-of-mass momentum lim-
its the stability region of the FFLO state, the pairing
instability induced by SOC effectively increases the stabil-
ity region of the FFLO state, especially in the weak-
coupling regime. An outstanding question here is what
are the topological properties of the FFLO pairing state,
which deserves further investigation in the future.
Now that we understand the nature of the pairing states in

the weak-coupling limit, we may derive an analytical ex-
pression for the molecular energy in this limit. Similar
to the divergence of the gap equation in the many-body
case [10,16], the summation in Eq. (4) must diverge when
Eb ! 0, as dictated by the pairing instability. The energy of
the molecular ground state in the weak-coupling limit cor-
responds to the lowest-lying singularity of the summand on
the right-hand side of Eq. (4). To evaluate this energy, we
set the denominator in the summand to zero and minimize
the molecular energy with the constraint k > kF. As the
center-of-mass momentum Q is either kF or 0 in
the weak-coupling limit, we need only consider these
two cases. For the FFLO state with Q ¼ kF, we find
the lowest energy for the occurrence of the singularity at

Ef
M ¼ ð3h�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 þ 8�2k2F

q
Þ=2, with f’ ! 0; k ! kFg (’ is

the angle between Q and k). For Q ¼ 0, the asymptotic

energy is given by Ef
M¼h�EF�ðh2þ�4k4F=E

2
FÞEF=

2�2k2F for �4k4F=E
2
F � h2 > 4�2k2F, and Ef

M ¼ EF þ h�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 þ 4�2k2F

q
for �4k4F=E

2
F � h2 < 4�2k2F. With these, the

critical SOC strength �c at which the FFLO-like pairing
state vanishes at Eb ¼ 0 can be calculated as a function of
the effective Zeeman field h [see Fig. 2(b)]. Apparently, the
stability region of the FFLO-like pairing state decreases as
the Zeeman field h increases. In particular, the FFLO-like
pairing state vanishes in the weak-coupling limit beyond
h=EF ¼ 1 for arbitrary SOC.
Polaron state.—The molecular states that we have dis-

cussed are the ground state of the system if only the bare

polaron state jPi ¼ c 0c
y
0#jNi is considered [21]. In two

dimensions, we should include the particle-hole fluctua-
tions above this bare polaron state for a more realistic
calculation. The energy of the dressed polaron state is
then lowered and the molecular state in Eq. (3) may no
longer be the ground state. Indeed, in the absence of SOC,
it has been shown previously that for a single impurity
atom in the presence of a polarized Fermi sea in two
dimensions, a polaron state dressed by particle-hole fluc-
tuations has lower energy than the bare molecular state that
is not dressed by such fluctuations [20,21].

FIG. 2 (color online). (a) The critical Ec
b for the first-order

transition to FFLO-like pairing state as a function of the SOC
strength for various effective Zeeman fields: h=EF ¼ 0:5 (solid
line), h=EF ¼ 0:95 (dashed line), h=EF ¼ 1:1 (dash-dotted
line). (b) The critical SOC strength in the weak-coupling limit
Eb ¼ 0 as a function of the effective Zeeman field h.
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We consider a variational ansatz for such a polaron state with one particle-hole density fluctuation in the large
polarization limit

jPi ¼ c 0c
y
0#jNi þ X

k>kF;q<kF

c "#
k;qc

y
q�k;#c

y
k;"cq;"jNi þ X

k;q<kF

c ##
k;qc

y
q�k;#c

y
k;#cq;"jNi

þ X
qhkF;kikF

�ðjq� kj � kFÞc ""
k;qc

y
q�k;"c

y
k;"cq;"jNi: (5)

Similar to the molecular case, the effective Zeeman field is applied to induce the spin polarization. Again, we fix the
Zeeman field in the following for simplicity and for experimental relevance.

Minimizing hPjðH � EPÞjPi, we find a self-consistent equation for EP, the energy of the polaron state

EP � h� �
�2k2F

EP � 2h
¼ 1

S

X
q<kF

2
41

U
� 1

S

X
k>kF

1

EP � h� Ekq � 2�2k2

E�2h�Ekq
� �ðjq� kj � kFÞ 2�2jq�kj2

E�Ekq

3
5

�1

; (6)

where Ekq ¼ �q�k þ �k � �q, and the third term on the

left-hand side corresponds to an energy shift due to the
SOC-induced particle-hole fluctuations in the Fermi sea
of spin-up atoms. In the weak-coupling limit, this should
be the dominant contribution as the summation on the
right-hand side of Eq. (6) vanishes at Eb ¼ 0. Hence, the

polaron energy in the weak-coupling limit is Ef
P ¼ ð3h�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h2 þ 4��2k2F

q
Þ=2. Comparing this energy with the mo-

lecular energy in the same limit, we can solve for the
critical SOC strength of the polaron-molecule transition.

We numerically evaluate the energy of the polaron
state, and calculate the critical SOC for the polaron-
molecule transition for various h as the interaction is
tuned. As is clear from Fig. 3, for sufficiently large SOC
strength, molecular states are always favored, despite the
shift in polaron energy by SOC. In addition, we find that
the critical SOC for the polaron-molecule transition
is always greater than the critical SOC for the FFLO-
like pairing states under the same effective Zeeman field.
Therefore, at the polaron-molecule transition, the center-
of-mass momentum of the molecular state is always

Q ¼ 0. As the molecular state with zero center-of-mass
momentum corresponds to the TSF state in the mean
field diagram, this polaron-molecule transition implies a
phase transition between the TSF state and the normal
state for a highly polarized 2D Fermi gas in the thermo-
dynamic limit.
For a 2D Fermi gas, fluctuations are important, and a

bare molecular state in Eq. (3) may not be accurate. It
has been pointed out in Ref. [21] that if particle-hole
fluctuations are included in the molecular states as has
been done for the polaron state, the energy of the
molecular state will be lowered. In the presence of
SOC, we expect a similar scenario will shift the critical
point of polaron-molecule transition to smaller SOC
strengths.
Conclusion.—We have studied the novel physics in-

duced by SOC in a 2D Fermi gas in the large polariza-

tion limit generated by an effective Zeeman field. With

the interplay between SOC, pairing, and particle-hole

fluctuations, the system exhibits many interesting prop-

erties, e.g., SOC-induced pairing instability, FFLO pair-

ing, polaron-molecule transition, etc. In particular, our

results suggest that the particle-hole fluctuations have

considerable impact on the stability of the TSF state

and can modify the mean-field phase diagram in the

large polarization limit. As polaron-molecule transitions

in a highly polarized Fermi gas have been experimen-

tally probed recently both in three dimensions [30] and

in two dimensions [22], our results may be tested di-

rectly in future experiments.
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FIG. 3 (color online). (a) The energy of the polaron state as a
function of Eb=EF for various SOC strengths with fixed effective
Zeeman field h=EF ¼ 0:5: �kF=EF ¼ 0 (thin solid line),
�kF=EF ¼ 0:2 (thin dashed line), �kFEF ¼ 0:6 (bold solid
line), �kF=EF ¼ 1 (bold dashed line). (b) The polaron-molecule
transition boundary on the fEb=EF; �kF=EFg plane for various
Zeeman fields: h=EF ¼ 0:5 (solid line), h=EF ¼ 0:95 (dashed
line), h=EF ¼ 1:1 (dash-dotted line).
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[4] Y.-J. Lin, K. Jiménez-Garcı́a, and I. B. Spielman, Nature
(London) 471, 83 (2011); R.A. Williams, L. J. LeBlanc,
K. Jimenez-Garcia, M. C. Beeler, A. R. Perry, W.D.
Phillips, and I. B. Spielman, Science 335, 314 (2012); J.
Zhang et al., Phys. Rev. Lett. 109, 115301 (2012).

[5] H. Zhai, Int. J. Mod. Phys. B 26, 1230001 (2012).
[6] C.-J. Wu, I.M. Shem, and X.-F. Zhou, Chin. Phys. Lett.

28, 097102 (2011).
[7] C. Wang, C. Gao, C.-M. Jian, and H. Zhai, Phys. Rev. Lett.

105, 160403 (2010).
[8] C. Zhang, S. Tewari, R.M. Lutchyn, and S. D. Sarma,

Phys. Rev. Lett. 101, 160401 (2008).
[9] M. Sato, Y. Takahashi, and S. Fujimoto, Phys. Rev. Lett.

103, 020401 (2009).
[10] S. Tewari, T. D. Stanescu, J. D. Sau, and S. D. Sarma, New

J. Phys. 13, 065004 (2011).
[11] K. Seo, L. Han, and C.A. R. Sá de Melo, arXiv:1201.0177.
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