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Many populations in nature are fragmented: they consist of local populations occupying separate
patches. A local population is prone to extinction due to the shot noise of birth and death processes. A
migrating population from another patch can dramatically delay the extinction. What is the optimal
migration rate that minimizes the extinction risk of the whole population? Here, we answer this question
for a connected network of model habitat patches with different carrying capacities.
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Many populations in nature are fragmented. Such meta-
populations consist of local populations occupying separate
habitat patches [1-3]. Habitat fragmentation is implicated
in the decline and extinction of many endangered species
[4]. To mitigate the negative impact of habitat fragmenta-
tion, conservation biologists have called for the construc-
tion of corridors to facilitate migration between separate
habitat patches [5]. Predicting how migration affects popu-
lation persistence is important for species conservation,
especially when the local population size is depressed,
and the local populations become prone to extinction be-
cause of randomness of the birth and death processes. In this
situation, it is of crucial importance to determine the opti-
mal migration rate that maximizes the mean time to ex-
tinction (MTE) of the metapopulation. This problem has
attracted much attention from ecologists and has been
addressed for different metapopulations in experiments
and stochastic simulations [6—11]. Here, we approach this
important problem theoretically for a simple logistic model
of stochastic local populations coupled by migration. We
analyze rare large fluctuations causing population extinc-
tion and show that there is an optimal migration rate that
maximizes the MTE of metapopulations.

Metapopulation model.—Mathematical biologists have
proposed different types of stochastic metapopulation
models. In a widely used class of models, the local popu-
lation distribution, its dynamics within a patch, and its
effect on migration are ignored [12-14]. We show here
that it is a proper account of these features that leads to the
qualitatively new effect of the existence of an optimal
migration rate.

Consider N local populations of particles A located on a
connected network of patches i = 1,2, ..., N. The parti-
cles undergo branching A — 2A with rate constant 1 on
each patch and annihilation 2A — @ with rate constant
1/(x;K) on patch i. The parameters k; = O(1), i =
1,2,..., N, describe the disparity among the local carrying
capacities «;K. Each particle can also migrate between
connected patches i and j with rate constant wu,; = ;.
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We assume that u;; = uM;
order unity.

For K > 1, each local population is expected to be long-
lived. Still, the shot noise will ultimately drive the whole
metapopulation to extinction. The MTE of the metapopu-
lation, T, is exponentially large in K, but finite [11,15].
How does T depend on the characteristic migration rate w?
At u = 0, each local population goes extinct separately,
and T, is determined by the patch with the greatest
carrying capacity, K,, = Kmax{x;}:

InT,—o/K = 2(1 — In2)max{«;} (1)

i» where elements of M; ; are of

(T for a single patch was found in Refs. [16—19]). The ideas
behind our results for & > 0 are the following. At very fast
migration, w — oo, the local populations become fully
synchronized, both at the level of the expected local carry-
ing capacities and at the level of large fluctuations leading
to population extinction. The total carrying capacity of the
metapopulation, as derived from the rate equation for this
model [20], becomes kK, where

kR=N?/D (k). (2)

One can argue, therefore, that at u — oo the metapopula-
tion goes extinct as if it were occupying a single effective
patch with the total rescaled carrying capacity k; that
is [21],

InT) /K =2(1 — In2)k. 3)

The main result of our work is that, for unequal «;, T
reaches its maximum at a finite value of the migration
rate. This fact is intimately related to synchronization of
the most probable local extinction events that occur already
at very small migration rates. The synchronization makes
T close to that for a single patch with the combined carry-
ing capacity K3 ;k;:

InT,_o/K =2(1 = 1n2)) «;. 4)
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Now let us inspect the MTE as described by Egs. (1), (3),
and (4). As Y ,k; = max{k;} and ¥ ,x; = i for any «;,
the MTE must reach a maximum at a finite value u = w.,
unless all the patches have the same carrying capacity. We
will present evidence that ., << 1 and scales as 1/K.

How to understand qualitatively the nontrivial depen-
dence of the MTE on w? Consider first the large-u regime.
Equation (2) implies that patches with smaller carrying
capacities dominate the effective annihilation rate. For
example, in a system of two patches, each particle spends
half its time on each of the two patches. Then the patch
with the smaller carrying capacity dominates the total
annihilation rate. As u decreases, particles will spend
enough time on the good patch so that the total carrying
capacity will drift up, and the MTE will increase. Now
consider a very small but finite u, so that the migration rate
is higher than the (exponentially small) local extinction
rates. Here, for the whole metapopulation to go extinct, all
local extinction events must occur in synchrony, and this
leads to Eq. (4).

Now we expose our results in more detail. For simplic-
ity, we will first consider a system of two patches and then

Pm,n(t) = I:IPm,n

= (m - I)mel,n + (l’l - 1)Pm,nfl +

+ /'L(m + 1)Pm+1,n—1 + /'L(n + 1)Pm—l,n+l - [(1 + M)(m + }’l) +

The probability P, that the metapopulation goes extinct
by time ¢ is governed by the equation
1

. 1
Po(t) = Epz,o + Epo,z- (8)

Long-time dynamics and the MTE—For t = t,, P, ,(t)
becomes sharply peaked at the local carrying capacities
m, = Kx, and n, = Ky,, corresponding to the stable fixed
point (x., y.) of the mean-field theory. The subsequent slow
decay of P, , in time is determined by the lowest excited
eigenmode 7, , of the master equation operator H:
P,.(0) =, exp(—t/T). Simultaneously, a probability
peak at m=n =0 grows with time: Pyo(t)=1—
exp(—1/T) [22-24]. The inverse eigenvalue T is an accurate
approximation to the MTE. Since it turns out to be exponen-
tially large with respect to K >> 1, one can neglect the right-
hand side of the eigenvalue problem H Topn = T/ T and
consider the quasistationary equation 5 T = 0.0nce 7, ,
is found, the MTE can be determined from Eq. (8):

T = [m0/K + o2/ (kK)]™! 9

WKB theory.—To find 7, , for not too small values of u,
we employ a dissipative variant of Wentzel-Kramers-
Brillouin (WKB) approximation, pioneered in Refs. [25-28]

m+1)(m+2)
Tpnl+2,n

generalize our results to a network of N patches. The rate
equations for the two-patch system are

2
. . y
F=x—a?—pxtpy, y=y-—tux—uy ()

where x and y are the local population sizes rescaled by
k1K, and k = K,/ k. Equations (5) have two fixed points:
the unstable point xo = y, = 0 that describes an empty
system and a stable point [x,(x, w) > 0, y.(k, u) > 0] that
describes an established metapopulation. At u = 0, one
has x, = 1 and y, = k, whereas for infinitely fast migra-
tion, u — 0,

X =y = 26/(1 + K). (6)

The characteristic time #, of population establishment is
determined by the smaller of the two eigenvalues of the
linear stability matrix of Eq. (5) at the fixed point (x., y.).

In a stochastic formulation, the probability P, ,(t) to
find m particles in patch 1 and n particles in patch 2 evolves
in time according to the master equation

(n+Dn+2)

kK mn+2
m(m — 1) N n(n — 1)]Pm N )
2K 2kK

|
and extensively used in the problems of stochastic population

extinction [17,18,23,24,29-38]; see also Ref. [39]. The WKB
ansatz is

Tmn = eXP[_KS(x’ y)]; (10)

where x = m/K and y = n/K are treated as continuous
variables. We plug Eq. (10) into the quasistationary equation
H T, = 0 and Taylor expand S around (x, y). In leading
order in 1/K < 1, this gives a zero-energy Hamilton-Jacobi
equation H(x,y, 9,5, ayS) =0 with the Cclassical
Hamiltonian

2
H()C,y, Px py) :x(er - 1) +%(672Px — 1) +y(ePy - 1)

2
+2 (e — 1)+ px(e™Pxtry—1)
2K
+py(elrr —1). (11

The established population corresponds to the fixed point
M = (x,, ¥+, 0, 0) of the Hamiltonian flow. Up to a preexpo-
nent, T ~ exp(KS), where S is the action along the instanton,
a special zero-energy (H = 0) trajectory in the phase space
x, ¥, Py py). The instanton exits, at time ¢t = — oo, the fixed
point M and approaches the fluctuational extinction point F
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that, for the two-patch branching-annihilation model, is (0, 0,
—o00, —00) [40]. In the absence of an independent integral of
motion in addition to the Hamiltonian itself, this trajectory and
the action along it can only be found numerically. Analytical
results are possible in the limits of small and large w that we
will now consider.

When p — 0, the Hamiltonian [Eq. (11)] becomes sepa-
rable, and the instanton trajectory can be easily found:

x(1) = q(t — 1), y(t) = kq(t — 1)

(12)
pi(t) = p(t — 1), py(t) = p(t — 1),
where
g()=22+3e'+e*)"!, p()=—In(1+¢"). (13)

Notice that the solution for x — 0 includes arbitrary time
shifts 7, and 7, in the x and y populations, respectively.
These will become important shortly. The action

Stu=0= [ (it p,y— Hyar

=2(1—1n2)(1 + k) =InT,_o/K.  (14)

Equation (14) coincides with that for an effective
one-patch system with the combined carrying capacity
(1 + x)K. This extinction time is exponentially large com-
pared with the one obtained if one neglects migration
completely; see Eq. (1) with max{«;} = 1. The sharp in-
crease in 7 once slow migration is allowed results from
synchronization of the most probable local extinction paths
[Eq. (12)]. For u < 1, the two noisy local populations
behave almost independently for typical small fluctuations.
For rare large fluctuations, such as the one causing extinc-
tion of the whole metapopulation, the dynamics of the local
populations becomes synchronized. How does the synchro-
nization show up in the WKB calculations? In the absence
of migration, u = 0, the time shifts 7, and 7, which appear
in Eq. (12) are arbitrary, reflecting the time-translational
invariance of local extinctions. A small w > 0 partially
breaks this invariance and selects a particular relative time
shift 7 = 7, — 7,, implying synchronization. Since the
zero-order action [Eq. (14)] is invariant with respect to
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FIG. 1 (color online). Function y(7) [see Eq. (15)] for two
patches, for k =1 (dotted line), 0.5 (solid line), and 0.25
(dashed line).

the local time shifts, it is necessary to consider a small u
correction, S = S(u — 0) + AS, in order to determine 7.
The first-order correction can be calculated by integrating
over the unperturbed x and y instantons [Eq. (12)]:

AS = —pmaxy(7),

xn) = [ fgoemrrri 1]

+ kq(t — )PP — 1 Tdr.  (15)
That is, the optimal time shift 7 = 7.(k) is determined
from the minimization of the action, or the maximization
of y(7), with respect to 7. This minimization can be easily
performed as the integral in Eq. (15) can be evaluated
analytically [20].

By virtue of Eq. (12), x(0) = 0. Thisimplies that AS < 0,
and so 7 is a nonincreasing function of w for u << 1. The
function y(7) is depicted in Fig. 1 for k = 1, 0.5, and 0.25.
For k = 1 (two identical patches), the maximum is achieved
at 7 = 0, as expected from symmetry, so AS = 0. In this
case, the solution [Eq. (12)] with k = 1 holds for all values of
. That is, a higher migration rate does not affect 7' up to a
preexponential factor. For x < 1, we obtain 7..(x) > 0 and
AS < 0; that is, T goes down with an increase in u (see
Fig. 2). Because of the large factor K, a small decrease in S
translates into an exponentially large reduction in T of the
metapopulation. Note that the WKB approximation leading
to Eq. (15) is only valid for u > K~!'. We expect that, for
# =< 1/K (but not exponentially small in K), weak synchro-
nization [to within time uncertainty of (xK) '] occurs, again
leading to MTE as in Eq. (14) [41].

Now consider the opposite limit, u — oo. Here, the
total population size Q = x + y varies slowly in compari-
son with the fast migration. The fast variables x and y
rapidly adjust to the slow dynamics of Q, staying close
to their stationary values for the instantaneous value
of Q. Transforming to Q and ¢ = x and associated con-
jugate momenta as a new set of canonical variables, one

0.8
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FIG. 2 (color online). K~ !InT vs the migration rate u for two
patches, k = 0.25. Circles: numerical WKB solutions. Diamond
and square: predictions of Egs. (1) and (14), respectively. Dashed
line: prediction of Eq. (15) for u < 1: 6§ = —0.5455....u.
Dotted line: prediction of Eq. (17) for u >> 1. The solid line was
obtained from a numerical solution of the master Eq. (7) for
K = 220.
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arrives [20] at a Hamiltonian, associated with the large
fluctuations of the total population size:

HS]OW(QJ P) = SHl[q(Q)» Q) O’ P]

- SI:Q(eP ~1) +1;—KKQ2((3_2P - 1)], (16)

with ¢ = 1/u < 1. Equation (16) describes an effective
single-patch Hamiltonian with a rescaled carrying capacity
ik = 4k/(1 + k), and we obtain

InT) oo _ 8(1 — In2)«
K 1+«

A7

For N = 2, this agrees with the announced result [Eq. (3)].

WKB numerics.—For intermediate values of wu, the in-
stantons and the associated action can be found numeri-
cally either by a shooting method [29,30] or by iterations
[17,37,42]. Here, we used both methods, and the results for
InT/K agreed within less than 1%. Figure 2 shows the
numerically found S for k = 0.25 and different values of
M, respectively. At u < 1, the numerical results agree
with the prediction of linear theory [Eq. (15)]. At large
M, they approach the asymptote [Eq. (17)]. Similar results
were obtained for other values of «. Figure 2 also compares
the WKB results with those of a numerical solution of
(a truncated version of) the full master equation (7).

Beyond WKB theory.—To evaluate the maximum MTE
and the optimal migration rate, one needs to resolve the
jump of (InT)/K at u = 0, predicted by the WKB theory
[see Egs. (1) and (14)]. We determined the MTE for
exponentially small u by numerically solving the master
equation (7) and by performing stochastic simulations. The
resulting u dependence of the MTE, at « = 0.25 and
different values of K, is shown in Fig. 3. The maximum
of T is observed at a small migration rate w. that appar-
ently scales as K.

Network of N patches.—Our results can be generalized
to a connected network of N patches with migration rate

0.7 (a) (b)
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FIG. 3 (color online). K~ 'InT vs u (a) and Inw (b) for a two-
patch metapopulation from a numerical solution of the master
equation and stochastic simulations. (a) k = 0.25 and K = 20,
30, 40, and 50 (bottom to top). Inset: The migration rate w.,, at
which the maximum of MTE is observed, vs K. (b) k = 0.25 and
K = 20; dashed line: Eq. (1), dotted line: Eq. (17).

w; between any two connected patches i and j. We assume
/‘Lij = /"LMij’ where Ml] = Mjl ~ 1. For M= 0, T is given
by Eq. (1). For u — oo, the rescaled population size of
each patch becomes x; = Q/N, where the total size of the
metapopulation Q = Y .x; slowly varies in time. We can
perform a canonical transformation from xp to the new
coordinate Q, keeping x, x5, ..., Xxy—; the same. This pro-
cedure [20] brings about a slow one-population
Hamiltonian Hy,,,,(Q, P), with P = p, and effective car-
rying capacity k from Eq. (2):

Hgow = 8[Q(€P -+ %Qz(e_zp - 1)]- (18)

This immediately yields the announced result [Eq. (3)].

How does synchronization of the most probable local
extinction paths for small w work for the N patches?
For u — 0, the WKB instanton is described by x;(¢) =
k;q(t — 7;) and p;(t) = p(¢r — 7;), where 7; are constants,
i=1,2,...,N, and functions ¢(7) and p(¢) are as defined
in Eq. (13). This leads to the action

S(p—0)=2(1—-12)Y «;=InT,_o/K, (19

as announced in Eq. (4). The relative time shifts 7;,
i=12...,N— 1, which determine synchronization of
the local extinction paths, can be found similarly to
Eq. (15), by minimizing AS:

N

AS = — pmax /oo xi(t, 7)dt,
trit J—oo Zl (20)
Xi(t, 7) = Kiq(t — 7)) Z M[ert=m)=rl=m) — 1],
j€l;

where I, is the subset of indices, corresponding to the
patches directly connected to the patch i. As in many other
problems with multidimensional instantons [43], the mini-
mization will typically give a unique solution up to the
overall time shift. Since, for the unperturbed local instan-
tons, p;(¢) is independent of i, we have yx;(z,0) = 0 in
Eq. (20). Therefore, AS = 0: i.e., T is a nonincreasing
function of w, as in the N = 2 case. Generically, AS is
strictly negative, so T decreases with an increase in u for a
small w. If all patches have the same carrying capacity, 7 is
constant in the WKB regime, up to a preexponential factor,
and corresponds to a single-patch MTE with the combined
carrying capacity KN [17,24]. Finally, the validity of the
WKB theory demands wn > K~!, where n is a typical
number of connections of a patch (that is, a typical node
degree of the network), i.e., |I;| ~ n, whereas the WKB
perturbation theory for small u demands un < 1.

In summary, we have developed a quantitative theory of
stochastic extinction of an established metapopulation
where individuals can migrate between different habitat
patches. We have found that, as the metapopulation goes
extinct, local extinction paths become synchronized
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already at very small migration rates. Finally, we have
shown that the MTE of the metapopulation reaches its
maximum for a small but nonzero migration rate.
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(Grant No. 408/08), the US-Israel Binational Science
Foundation (Grant No. 2008075), and the Michigan
Center for Theoretical Physics.
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