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Recent experiments on a 2D Fermi gas find an undamped breathing mode at twice the trap frequency

over a wide range of parameters. To understand this seemingly scale-invariant behavior in a system with a

scale, we derive two exact results valid across the entire Bardeen-Cooper-Schrieffer–Bose-Einstein

condensation (BCS–BEC) crossover at all temperatures. First, we relate the shift of the mode frequency

from its scale-invariant value to �d � ð1þ 2=dÞP� �ð@P=@�Þs in d dimensions. Next, we relate �d to

dissipation via a new low-energy bulk viscosity sum rule. We argue that 2D is special, with its logarithmic

dependence of the interaction on density, and thus �2 is small in both the BCS–BEC regimes, even though

P� 2"=d, sensitive to the dimer binding energy that breaks scale invariance, is not.
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Systems exhibiting scaling symmetry or conformal in-
variance are very special. In all laboratory realizations, one
needs to tune one or more physical parameters (temperature,
chemical potential, coupling) to observe scale-invariant be-
havior, for instance, in the vicinity of a quantum critical
point [1]. Another example is provided by strongly interact-
ing Fermi gases in three spatial dimensions (3D), which
display remarkable scale invariance properties at unitarity,
where the s-wave scattering length diverges by tuning to the
Feshbach resonance. This is manifested in universal ther-
modynamics [2], the vanishing of the dc bulk viscosity [3],
and the entire bulk viscosity spectral function �ð!; TÞ [4] at
unitarity. There may also be tantalizing connections be-
tween the ratio of the shear viscosity � to the entropy
density s of the unitary Fermi gas [5,6] and the bound for
�=s conjectured on the basis of gauge-gravity duality [7].

For the unitary gas in a 3D isotropic harmonic trap, scale
invariance manifests itself most dramatically as an un-
damped monopole breathing mode oscillating at twice
the trap frequency !0 independent of temperature [8,9].
This mode corresponds to an isotropic dilation of the gas
wherein the coordinates in the many-body wave function
are scaled / cosð!tÞ. Scale invariance implies that this
wave function is an exact eigenstate of the Hamiltonian
and oscillates at a frequency 2!0 without damping [8].

In a recent experiment [10], collective modes in a two-
dimensional (2D) Fermi gas were measured over a
broad range of temperatures and interaction strengths.
Remarkably, the breathing mode was found to oscillate
without any observable damping at ’ 2!0 for 0:37 &
T=TF & 0:9 and 0 & lnðkFa2Þ & 500, where a2 is the 2D
scattering length. This observation is extremely surprising,
given that there is no a priori reason to expect scale-
invariant behavior in a system which has a scale, namely,
the dimer binding energy in 2D.

Our goal is to understand why the 2D Fermi gas appears
to show nearly scale invariant behavior over a very broad

range of parameters without the need for fine-tuning.
Understanding this may give insight into related problems
such as why, in some quantum field theories with confor-
mal invariance broken by a mass term, the sound speed and
bulk viscosity remain close to their conformal-limit values
for a wide range of energies [11].
We emphasize that this question is distinct from that of

small deviations from scale invariance in weakly interact-
ing 2D Bose gases. Quantum gases with an unregularized
delta-function interaction have an SO(2,1) symmetry [12]
and exhibit scale invariance. However, the cutoff essential
to describe an actual short-range interaction leads to a
violation of scale invariance (analogous to an anomaly in
quantum field theory) and an interaction-dependent shift in
the breathing mode frequency from 2!0 [13] in a 2D Bose
gas. The 2D Bose gas experiments that see nearly scale-
invariant behavior are in the weakly interacting regime
[14–16], where deviations are expected to be small. In
contrast, the 2D Fermi case that we focus on is not weakly
interacting and we must take into account strong
interactions.
Results.—We begin by summarizing our approach and

main results. We consider a dilute Fermi gas in d ¼ 2, 3
dimensions with a short-range s-wave interaction, arising
from a broad Feshbach resonance between two spin spe-
cies, each with density n=2. The dimensionless interaction
gd is expressed as g3 ¼ �1=kFa3 in 3D and g2 ¼
logðkFa2Þ in 2D; ad is the s-wave scattering length that
sets the dimer binding energy "b ¼ �1=ma2d, when

ad > 0. The fermions have mass m, density n� kdF, and
we set @ ¼ 1.
The quantity of central interest in our analysis is

�d � ð1þ 2=dÞP� �ð@P=@�Þs; (1)

which is the deviation of the adiabatic compressibility
�ð@P=@�Þs from its value ð1þ 2=dÞP in a scale-invariant
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system, where the pressure P / �ð1þ2=dÞ. Here s ¼ S=N is
the entropy per particle and � ¼ mn the mass density.

First, we show that �d governs the difference between
the frequency !m of the hydrodynamic monopole breath-
ing mode and 2!0 for a Fermi gas in an isotropic harmonic
trap VextðrÞ ¼ m!2

0r
2=2. We find

!2
m=4!

2
0 ¼ 1� d2

8

Z
ddr�dðrÞ=

Z
ddrnðrÞVextðrÞ: (2)

Second, we show that �d is related to the exact sum rule for
the bulk viscosity spectral function �ð!Þ:

ð2=�Þ
Z 1

0
d!½�ð!Þ � C�0ð!Þ=C0� ¼ �d: (3)

Here, C is the ‘‘contact’’ [17,18] with �0ð!Þ and C0 the
bulk viscosity and contact in the zero-density n ! 0 limit
at T ¼ 0. The subtraction on the left-hand side removes the
large-! tail of �ð!Þ (see Fig. 1) and the sum rule thus
measures the availability of low-energy (& j"bj) spectral
weight for excitations that break scale invariance.

The experimental observations of Ref. [10] in 2D Fermi
gases imply that �2 � n�F. Our goal is to understand why
�2 is so small for a wide range of interaction strengths,
even though other measures of the departure from scale
invariance, such as P� 2"=d (where " is the energy
density), are not small. �d strictly vanishes only at the
unitary point g3 ¼ 0 in 3D, and in the weak-coupling
BCS limit g2 ! 1 in 2D. However, we will argue that
there is considerable evidence for an anomalously small �2

across the entire BCS-BEC crossover. Remarkably, within
mean field theory (MFT) [19] �MF

2 ¼ 0 for all values of g2
(and only in d ¼ 2). In addition, the available T ¼ 0
quantum Monte Carlo (QMC) data in 2D [20] leads to an
estimate of �2 that is consistent with zero over the entire
crossover, except possibly near g2 ¼ 0. We reach the same
conclusion at finite T using a scaling argument, and argue
that this is due to the logarithmic dependence of g2 on
density. Using the sum rule (3), we will argue that a small

�2 also gives insight into the negligible viscous damping of
the monopole mode.
Monopole breathing mode.—The normal mode solutions

of the hydrodynamic equations with frequency ! are ob-
tained from the Lagrangian [9]

L½u� ¼ !2
Z

dr�0u
2ðrÞ �

Z
dr½��1

0 ð@P=@�Þsð��Þ2

þ 2�0ð@T=@�Þs���sþ �0ð@T=@sÞ�ð�sÞ2�; (4)

describing quadratic fluctuations in entropy �s and density
�� about their equilibrium values, s0 and �0. The displace-
ment field uðr; tÞ is related to the velocity v by @u=@t ¼ v.
Conservation of density and entropy gives �� ¼
�r � ð�0uÞ and �s ¼ �u � rs0. Equation (4) is valid in
both the normal as well as the superfluid phase, where it
describes first sound with vn ¼ vs [9].
We obtain the result (2) for the breathingmode frequency

using the scaling ansatzuðr; tÞ ¼ ur cosð!tÞ in (4), together
with the Maxwell relation ð@P=@sÞ� ¼ �2

0ð@T=@�Þs
and the equilibrium identities rP0¼ð@P=@�Þsr�0þ
ð@P=@sÞ�rs0¼�n0rVext for Vext ¼ m!2

0r
2=2, and

rT0¼ð@T=@�Þsr�0þð@T=@sÞ�rs0¼0. The above scal-

ing ansatz provides a rigorous upper bound on the mode
frequency [9]. Generalizing the variational ansatz to u ¼
r
P

n¼0unr
2n cosð!tÞ, it is easy to show that the corrections

to (2) are governed by higher powers of �d. Thus, �d

rigorously determines the deviation of the monopole fre-
quency !m from 2!0.
We next relate �d to the contact C, given by C ¼

2�ma2ð@"=a2Þs in 2D [21,22] and C ¼ 4�ma23ð@"=@a3Þs
in 3D [18]. We find �2 ¼ �½Cþ a2

2 ð@C=@a2Þs�=4�m and

�3 ¼ �½Cþ a3ð@C=@a3Þs�=36�ma3. This makes it clear
that !m ¼ 2!0 is strictly valid only for a2 ! 1, the BCS
limit in 2D, where C ! 0, and at unitarity in 3D, where
ja3j ! 1. On the other hand, the breathingmode frequency
(2) is very sensitive to �d � 0 in both 2D and 3D. UsingR
ddrnVext �OðN�FÞ, we estimate that a value of �d as

small as 0:1n�F would give rise to a 5% shift in !m. The
fact that no such shift is observed [10] in 2D indicates that
we must understand why �2 � n�F for a wide range of
g2 and T.
Viscosity sum rules.—The bulk viscosity � is the only

transport coefficient that damps the scaling flow u / r [23].
To gain insight into why it is small in 2D, we derive a new
bulk viscosity sum rule that relates �2 to the low-energy
spectral weight for excitations that break scale-invariance
symmetry.
The bulk viscosity spectral function �ð!Þ is related by a

Kubo formula to the transverse �Tðq; !Þ and longitudinal
�Lðq; !Þ current correlators: �ð!Þ ¼ limq!0m

2!½Im�L �
ð2� 2=dÞIm�T�=q2. Generalizing Ref. [4] to arbitrary d,
we obtain the exact sum rule

2

�

Z 1

0
d!�ð!Þ ¼ �ð2� 2=dÞXT þ XL � �c2s : (5)

0 1 2 3
0

b

C 0 C0

FIG. 1 (color online). Schematic plot of the bulk viscosity
spectral function �ð!Þ (solid line) and the scaled ‘‘vacuum’’
contribution C�0ð!Þ=C0 (dashed line) given by (6). The small-
ness of the subtracted sum rule (3) for ½�ð!Þ � C�0ð!Þ=C0�
implies very little spectral weight below the dimer binding
energy j"bj for excitations that break scale invariance.
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Here, XTðLÞ ¼ limq!0h½ĵx�q; ½Ĥ; ĵxq��iTðLÞ=q2 with the cur-

rent ĵxq ¼ P
k	½ð2kþ qÞx=2m�ĉyk	ĉkþq	. The subscript

TðLÞ denotes the transverse (longitudinal) q ! 0 limit

[24], and cs � ð@P=@�Þ1=2s is the adiabatic sound
speed. Evaluating the commutators in (5) for an isotropic
pair potential with range r0, we find the 2D result
ð2=�ÞRd!�ð!Þ¼2"��c2sþ
C=mþ�Cln�=m. Here,

� ¼ 1=r0 is an ultraviolet (UV) cutoff, and 
, � are
constants. In 3D [4], the terms proportional to C are of
the form 
C=ma3 þ �C�=m.

The key insight that allows us to obtain physical results
independent of � is that an UV divergence of precisely the
same form must arise in the two-body problem. The sum
rule for �0 has the same form as above, but with energy
density and contact replaced by their zero-density, T ¼ 0
values, "0 and C0, while cs ¼ 0 for n ! 0. The exact
solution �0 of the two-body problem can then be used to
regularize the divergence in the many-body problem. The
same idea underlies the standard replacement of the bare
interaction with the two-particle s-wave scattering length
in the study of dilute gases [25].

The T ¼ 0, zero-density limit �0ð!Þ of the viscosity
spectral function has an exact representation in terms of
the sum of all particle-particle ladder diagrams with two
external current vertices. These are the well-known [26]
Aslamazov-Larkin, Maki-Thompson, and self-energy dia-
grams. We thus obtain the 2D result [27]

�0ð!Þ ¼ C0

4m!

�ð!� j"bjÞ
ln2ð!=j"bj � 1Þ þ �2

; (6)

for !> 0, and �0ð�!Þ ¼ �0ð!Þ. In 2D, there is a bound
state for all values of the scattering length [19]. Thus, in the
zero-density (single dimer) and temperature limit, "0 ¼
"b ¼ �1=ma22 and C0 ¼ 4�=a22. The absence of spectral
weight in �0 below j"bj is due to the fact that the only
excitations in this limit involve pair disassociation with a
gap j"bj at T ¼ 0.

The UV divergences can now be removed by look-
ing at the difference between the sum rule for the inter-
acting many-body system and that for the T¼0,
n ! 0 limit, scaled by (C=C0). In 2D, we find
ð2=�ÞRd!½�ð!Þ �C�0ð!Þ=C0� ¼ 2"� �c2s � 2C"0=C0.

Using C ¼ 4�mðP� "Þ and "0=C0 ¼ �1=ð4�mÞ, we ob-
tain (3) in 2D. The same methodology can also be used to
obtain corresponding results for the bulk viscosity in 3D as
well as the shear viscosity in any d [27].

Our main focus will be on (3), which quantifies the low-
energy spectral weight in �ð!Þ with the high-energy tail
C�0ð!Þ=C0 subtracted out; see Fig. 1. However, we can
also obtain the total spectral weight in �ð!Þ:

S2D � 2

�

Z 1

0
d!�ð!Þ ¼ 3P� "� �c2s

¼ � 1

8�m

�
@C

@g2

�
s
: (7)

S2D � 0 for all g2 [21], as required by �ð!Þ � 08! [4]. In
Fig. 2, we plot S2D as a function of g2 ¼ logðkFa2Þ using
T¼0 QMC data [20] to evaluate the right-hand side of (7).
Both S2D and its 3D counterpart S3D [4] (inset of Fig. 2
using the QMC data of Ref. [28]) are � n�F in the BCS
region gd * 1, but become significantly larger on the
BEC side.
Apparent scale invariance.—We now have all the results

in hand to discuss deviations from scale invariance. So far,
we have shown that �d controls the deviation of the mono-
pole !m from 2!0 and also governs the availability of
low-energy bulk viscosity spectral weight �ð!Þ. We can
intuitively understand the exact relation (3) between a
�-sum rule and the shift in the mode frequency as a
Kramers–Kronig transform of the dc bulk viscosity �ð0Þ
that damps the monopole mode.
What, if anything, is special about 2D that leads to the

strong experimental signatures [10] of scale invariance?
We begin by addressing this question at T ¼ 0 and then
generalize to finite temperatures. The first clue comes
from MFT, which in 2D has a transparent solution [19]
across the entire T ¼ 0 BCS-BEC crossover: " ¼
n�F=2� nj"bj=2. This leads to P ¼ n�F=2 and thus
�MFT
2 � 0 for all couplings g2. Contrast this with the 2D

MFT result P� " ¼ nj"bj=2, which is very small in the
BCS regime but very large on the BEC side. This is our first
hint of something we will see again: �d is small in part
because it does not involve physics on the scale of the
dimer binding energy, whereas P� " does.
To understand how quantum fluctuations beyond MFT

affect the result for �2, we use T ¼ 0 QMC data [20]. We
find that the QMC-derived �2 is vanishingly small in both
BCS and BEC regimes, and even for g2 � 0, �2 � 0
(within large error bars) as shown in Fig. 3. We also see
from this figure that the 2D result is quite different from the
3D case. The QMC estimate for �3 (using data from
Ref. [28]), though quite small on the BCS side of the
crossover, is large in the BEC region in 3D.

BCSBEC

1 0 1 2 3

0

2

4

6

g2

S 2
d

n
F

2 0 2

0

0.1

g3

S 3
d

n
F

FIG. 2 (color online). Bulk viscosity sum rule:—The 2D sum
rule S2D at T ¼ 0 in units of n�F plotted as a function of the
coupling g2 ¼ lnðkFa2Þ. Inset: The corresponding 3D result [4]
as a function of g3 ¼ �1=ðkFa3Þ. In both 2D and 3D, gd ! þ1,
the BCS limit, while gd ! �1 is the BEC limit.
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We now show that the difference between 2D and 3D
is tied to the form of the dimensionless couplings g2 ¼
logðkFa2Þ and g3 ¼ �1=kFa3. In the BCS limit (gd�1),
the equation of state has the form "¼ðn�F=2Þ½1þA=gdþ
B=g2dþ���� in both 2D and 3D. The perturbative Hartree

plus ‘‘Fermi liquid’’ corrections are larger than the pairing
contribution not shown. (The only qualitative difference is
that A is negative in 3D but positive in 2D [29].) Both �d,
calculated using (1), and P� " ¼ ðad=dÞð@"=@adÞ, are
small in the BCS limit. In the BEC limit (gd < 0 and
jgdj � 1), we get " ¼ �nj"bj=2þ � � � , which is the en-
ergy density of n=2 dimers with perturbative corrections in
powers of 1=jgdj. The key difference between 2D and 3D is
in the gd-dependence of the binding energy j"bj, which
� expðjg2jÞ in 2D and �1=jg3j2 in 3D.

To understand the effects of finite temperature, we
write the pressure and energy density, related by P ¼
nð@"=@nÞs � ", in the scaling forms P ¼ n�FF ðgd; sÞ
and " ¼ n�FEðgd; sÞ. There is a qualitative difference be-
tween the g2-dependence of the scaling functions F and E
in 2D. The pressure does not have a contribution on the
scale of the dimer binding energy j"bj ¼ 1=ma22; i.e., it does
not have a potentially exponentially large contribution in
g2 ¼ logðkFa2Þ, while the energy density does. We have
already seen this in the T ¼ 0MFT results, and the same is
also observed in the 2Dvirial expansion [30].We conjecture
that the scaling function F is a slowly varying function of
g2 at all temperatures in 2D (except in the immediate
vicinity of a weak singularity at Tc). The equation of state
is then P� n2 up to logarithmic corrections, leading to a
small �2.

The absence of high energy contributions on the scale of
the dimer binding energy to P and the compressibility is
also consistent with �2 being related to the low energy
spectral weight as shown by our sum rule. Once high
energy excitations on the scale of j"bj are excluded, low
energy phonons (with a near scale-invariant dispersion
!qðnÞ �

ffiffiffi
n

p
q), for instance, dominate the equation of

state leading to P� n2 and a small �2. Unlike �2, however,

P� " is not small, as it involves high energy contributions
on the scale of j"bj in the BEC regime.
Another way to characterize the deviation from scale

invariance, analogous to the ‘‘trace anomaly’’ in quantum
field theory, is to rewrite (1) as �d ¼ �ð@P=@gdÞ�ðgdÞ=d,
where �ðgdÞ � kFð@gd=@kFÞ describes the scaling of the
coupling gd with respect to the momentum scale kF. We
see that �ðg2Þ ¼ 1 while �ðg3Þ ¼ g3, reflecting the differ-
ence between the logarithmic and power-law dependence
on the density in 2D and 3D, respectively. In both the BCS
(gd � 1) and BEC (gd � �1) regions, the 2D beta func-
tion is much smaller than its 3D counterpart.
Finally, using the sum rules (7) and (3), we discuss the

damping of the monopole mode, controlled by �ð0Þ.
Although a small value for the sum rule by itself does not
rigorously provide an upper-bound on � , any physically
reasonable functional form for the spectral function (e.g.,
a Drude form for! & j"bj; see Fig. 1) would lead to a very
small value for �ð0Þ. We see from Fig. 2 that in the BCS
regime gd * 1, the sum rule

R
d!�ð!Þ � n�F in both 2D

and in 3D.Wewould thus expect a very small � � n here in
both 2D and 3D. This sum rule is quite large on the BEC
side and does not lead to any restriction on � . From the
low-energy sum rule (3), however, we see that the large
value of S2D in the BEC limit is entirely dominated by the
high-energy tail on scales larger than the dimer binding
energy. Once this is subtracted out, the low-energy inte-
grated spectral weight, equal to�2, is very small even in the
BEC regime (see Fig. 1). Thus in 2D, we expect the bulk
viscosity � to be very small both in the BCS and in the BEC
regimes.
Conclusions.—We have shown that the parameter �d

controls the deviation of the breathing mode frequency
!m from its scale-invariant value 2!0 and also quantifies
the low-energy spectral weight for excitations that break
scale invariance, using an exact sum rule. We argue that 2D
is special, with a coupling that depends logarithmically on
density, leading to a very small �2, even in the BEC regime
where scale invariance is strongly broken by the large
dimer binding energy (and hence P� " is large). The
small �2 also implies, via the 2D sum rule, weak damping
of the monopole mode in both the BCS and BEC regimes.
The regime very near g2 ¼ 0 deserves further theoretical
and experimental investigation, but the available evidence
suggests that �2 might be small there as well.
M. R. acknowledges support from the NSF Grant
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Note added in proof.—While completing this manuscript

we became aware of Ref. [31], which analyzes the experi-
ment of Ref. [10] from the different perspective of quan-
tum anomalies at T ¼ 0. In the only area of substantial
overlap, our general result (2) for the breathing mode
reduces to that of Ref. [31] if we assume a polytropic
equation of state.

BCSBEC

2 0 2 4
0.5

0

0.5

gd

d
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F

FIG. 3 (color online). �2 (solid blue line) and �3 (dashed red
line) shown in units of n�F, where n and �F are the two and three
dimensional density and Fermi energy, respectively. The error
bars on �2 are associated with numerical derivatives of QMC
data (with errors) [20]. The coupling gd is lnðkFa2Þ for d ¼ 2
and �1=ðkFa3Þ for d ¼ 3.
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