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Colloidal capsules can sustain an external osmotic pressure; however, for a sufficiently large pressure,

they will ultimately buckle. This process can be strongly influenced by structural inhomogeneities in the

capsule shells. We explore how the time delay before the onset of buckling decreases as the shells are

made more inhomogeneous; this behavior can be quantitatively understood by coupling shell theory with

Darcy’s law. In addition, we show that the shell inhomogeneity can dramatically change the folding

pathway taken by a capsule after it buckles.
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Many important natural or technological situations
require understanding thin, spherical shells; examples in-
clude colloidal capsules for chemical encapsulation and
release [1–3], biological cells [4,5], pollen grains [6], sub-
mersibles [7], chemical storage tanks [8], nuclear contain-
ment shells [8], and even the Earth’s crust [9]. In many
cases, the utility of such a shell critically depends on its
response to an externally imposed pressure. For small
pressures, a homogeneous, spherical shell, characterized
by a uniform thickness, supports a compressive stress, and
it shrinks isotropically. Above a threshold pressure, how-
ever, this shrinkage becomes energetically prohibitive; in-
stead, the shell buckles, reducing its volume by forming a
localized indentation at a random position on its surface.
For the case of a homogeneous shell, this threshold pres-
sure can be calculated using a linearized analysis of shell
theory [10,11], while the exact morphology of the shell
after it buckles requires a full nonlinear analysis [12–14].
However, many shells are inhomogeneous, characterized
by spatially varying thicknesses and elastic constants
[6,15–18]. Such inhomogeneities can strongly influence
how a shell buckles [6,10,19–23]. Unfortunately, despite
its common occurrence in real shells, exactly how inho-
mogeneity influences the onset of buckling, as well as the
shell morphology after buckling, remains to be elucidated.
A deeper understanding requires careful investigation of
the buckling of spherical shells with tunable, well-defined,
inhomogeneities.

In this Letter, we use a combination of experiments,
theory, and simulation to study the buckling of spherical
colloidal capsules with inhomogeneous shells of non-
uniform thicknesses. We show that the onset of buckling,
above a threshold external osmotic pressure, is well de-
scribed by shell theory; however, even above this thresh-
old, the capsules do not buckle immediately. We find that
the time delay before the onset of buckling decreases as the
shells are made more inhomogeneous; these dynamics can
be quantitatively understood by coupling shell theory with

Darcy’s law for flow through a porous capsule shell, even
for highly inhomogeneous shells. Moreover, we find that
the shell inhomogeneity guides the folding pathway taken
by a capsule during and after buckling. We use these
insights to controllably create novel colloidal structures
using buckling.
We fabricate monodisperse thin-shelled capsules using

water-in-oil-in-water (W=O=W) droplets prepared by
microfluidics [24,25]. The inner and outer phases are a
10 wt% solution of polyvinyl alcohol of viscosity
� ¼ 13:5 mPa s, as measured using a strain-controlled
rheometer, while the middle oil phase is a photopolymer-
izable monomer solution. The polyvinyl alcohol solution is
less dense than the oil; as a result, after the droplets are
produced and collected, the light inner water droplets
gradually rise within them. This causes the oil to gradually
thin on the top side of each droplet and thicken on the
bottom [26]. We exploit this effect to prepare capsules,
with outer radius R0, and spatially varying shell thickness
hð�Þ � h0 � � cos�; � is measured from the top of the
gravitationally oriented shell, h0 is the average shell thick-
ness, and � is the total distance moved by the inner droplet,
as shown schematically in Fig. 1(a). The shell inhomoge-
neity can thus be quantified by the ratio �=h0. We use UV
light to polymerize the oil either as the capsules are pro-
duced in situ, or after different average waiting times, tw
[27]; this enables us to prepare separate batches of capsules
characterized by varying degrees of shell inhomogeneity
[28,29]. Some capsules are subsequently washed in de-
ionized water. The shell is a solid characterized by a
Young’s modulus E � 600 MPa [30]; importantly, while
this shell is impermeable to Naþ and Cl� ions, it is per-
meable to water [31].
To probe their mechanical response, we subject inho-

mogeneous capsules, characterized by tw ¼ 1 min ,
�=h0 � 0:2 and h0=R0 ¼ 0:017, to an external osmotic
pressure by injecting and gently mixing 20 �L of the
capsule suspension into a fixed volume of NaCl solution,
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VNaCl � 130–400 �L. We investigate the pressure depen-
dence of buckling using NaCl concentrations in the range
0.063–2.165 M. Estimating the total volume of the injected
capsules using optical microscopy allows us to calculate
the final NaCl concentration of the outer phase, which
then ranges from cNaCl ¼ 0:055–2:068 M. These corre-
spond to osmotic pressure differences across the shell of
�¼ ð2cNaClþ�out��inÞ�NAkBT¼ 0:025–10:09 MPa,
where NA is Avogadro’s constant, kB is Boltzmann’s con-
stant, T � 300 K, and �out and �in are the measured
osmolarities of the fluids outside and inside the capsules,
respectively, in the absence of NaCl. For each batch of
capsules studied, we monitor an average of 75 capsules
over time using optical microscopy.

The osmotic pressure difference across these inhomoge-
neous shells forces the capsules to buckle; we observe the
abrupt formation of localized indentations in the shells, as
shown in Fig. 1(b). For each osmotic pressure investigated,
the fraction of the capsules that buckle increases over time,
eventually plateauing, as shown in Fig. 1(c). We quantify
this behavior by fitting this increase to an empirical ex-
ponential relationship, exemplified by the smooth lines in
Fig. 1(c). The plateau value of this function yields a
measure of the total fraction of the capsules that ultimately
buckle over sufficiently long times, while the time constant
of this function yields a measure of the time delay before
the onset of buckling, �. For sufficiently large �, the total
fraction of the capsules that ultimately buckle increases
dramatically with increasing �, as shown by the gray
circles in Fig. 1(d); this indicates that the capsules buckle
above a threshold pressure, �� [32]. We empirically fit
these data using the cumulative distribution function of a
normal distribution, shown by the black line in Fig. 1(d);
the mean value and standard deviation of this fit yield a
measure of �� and the spread in ��, respectively.

We study the geometry dependence of�� by performing
additional measurements on inhomogeneous capsules,
polymerized in situ, with different shell thicknesses and
radii; these are characterized by �=h0 � 0:2, and h0=R0 ¼
0:019 or h0=R0 ¼ 0:1. Similar to the h0=R0 ¼ 0:017 case,
for sufficiently large �, the total fraction of the capsules
that ultimately buckle increases dramatically with increas-
ing �, as shown by the red triangles and blue squares in
Fig. 1(d). Interestingly, we find that the threshold buckling
pressure �� � ðh0=R0Þ2 [Fig. 1(d), inset]; this observation
is reminiscent of the prediction of shell theory for the
buckling of a uniform shell [11], despite the fact that our
capsules are inhomogeneous. To understand this behavior,
we consider the local deformability of an inhomogeneous
shell at various points on its surface. Because the 2D
stretching and bending stiffnesses scale as �h and �h3

[33], respectively, the thinnest part of the shell, where h �
h0 � �, should be the easiest to deform.We directly visual-
ize that buckling begins at this ‘‘weak spot’’ using confocal
microscopy of inhomogeneous capsules with fluorescent

shells characterized by �=h0 � 0:84 [Fig. 1(b), lower
panel]. Consequently, we expect the onset of buckling to
be governed by deformations in this part of the shell. To
quantify this expectation, we apply shell theory to an
inhomogeneous shell characterized by the same geometry

FIG. 1 (color online). (a) Schematic showing the capsule ge-
ometry investigated. (b) Upper: buckling of a capsule; scale bar
is 20 �m. Lower: buckling begins at the thinnest part of the shell
for capsules with thickness inhomogeneity �=h0 � 0:84; scale
bars are 50 �m. (c) Fraction of capsules buckled over time, for
three different osmotic pressures �. Capsules have mean shell
thickness h0 ¼ 1:2 �m, outer radius R0 ¼ 70 �m, and �=h0 ¼
0:20. Smooth lines show exponential fits. (d) Total fraction of
capsules that ultimately buckle over time for varying �, for
capsules with h0, R0, and �=h0 ¼ 1:2 �m, 70 �m, and 0.20
(gray circles), 1:3 �m, 67 �m, and 0.23 (red triangles), and
5:5 �m, 55 �m, and 0.19 (blue squares). Smooth curves are fits
to the data using the cumulative distribution function of the
normal distribution. Inset shows the mean osmotic pressure of
each fit versus h0=R0; vertical and horizontal error bars show the
standard deviation of each fit and estimated variation in h0=R0,
respectively. Straight line shows ðh0=R0Þ2 scaling. (e) Time
delay before the onset of buckling, �, normalized by h20, for
varying �, for the same capsules as in (d). Closed points show
�>�� while open points show �<��. Vertical error bars
show uncertainty arising from estimated variation in h0. Black
line shows ��1 scaling. (f) Time delay � decreases with the
wait time before a shell is polymerized, tw; capsules have
h0 ¼ 1:2 �m and R0 ¼ 70 �m, and are buckled at � �
0:86 MPa >��. Black line shows theoretical prediction cou-
pling shell theory and Darcy’s law, as described in the text, with
k � 3:5� 10�24 m2.
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as the experimental capsules [25]; this analysis yields

�� ¼ 2E
ffiffiffiffiffiffiffiffiffiffiffiffiffi

3ð1��2Þ
p ðh0��

R0
Þ2 � 470ðh0=R0Þ2 MPa, assuming a

Poisson ratio � � 1=3. The dependence of �� on h0 � �
confirms our expectation that the threshold buckling pres-
sure is set by the thinnest part of the inhomogeneous shell.
Moreover, we find ��ðR0=h0Þ2 � 600� 200 MPa for the
experimental capsules [solid line, Fig. 1(d) inset], in good
agreement with our theoretical prediction. This indicates
that the onset of capsule buckling is well described by shell
theory.

Within this framework, for �>��, a capsule remains
spherical before it buckles; it initially responds to the
applied pressure by contracting uniformly, reducing its
volume from its initial value, V0, by a threshold amount
�V�, before buckling. We find that the time delay before
the onset of buckling, �, strongly decreases with increasing
osmotic pressure�>��, as shown by the closed points in
Fig. 1(e). We hypothesize that this behavior reflects the
dynamics of the fluid flow through the capsule shell; for the
capsule to buckle, a volume �V� of fluid must be ejected
from its interior. The time delay can then be estimated as
� ¼ �V�=Q [34], where both �V� and Q, the volumetric
rate of fluid ejection from the capsule interior, are functions
of �=h0. We calculate�V� for inhomogeneous shells using
shell theory and validate the calculations with numerical
simulations; the fluid ejection rateQ follows from integrat-
ing Darcy’s law over the surface of the capsule geometry
shown in Fig. 1(a) [25]. Combining these results, we obtain

� � V0

Q0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3ð1� �Þ
1þ �

s

h0
R0

�

1� �

h0

�

2
; (1)

whereQ0 � 4�R2
0�k=�h0 and k is the shell permeability.

For the inhomogeneous capsules, characterized by �=h0 �
0:2, we thus expect �=h20 � 0:8�=k�; our experimental

measurements of � allow a direct test of this prediction.
Above ��, the data collapse when � is rescaled by h20, as
shown by the closed points in Fig. 1(e), consistent with our
expectation; moreover, by fitting these data [black line in
Fig. 1(d)], we obtain an estimate for the shell permeability,
k � 7� 10�24 m2. We use optical microscopy to directly
measure the rate at which the capsule volume decreases
immediately after the onset of buckling [25]; this gives an
independent measure of the shell permeability. We find
k � 2� 10�24 m2 (Fig. S8, in Ref. [25]), in good agree-
ment with the fit shown in Fig. 1(e); this further confirms
the validity of Eq. (1).

To test the applicability of this picture to even more
inhomogeneous capsules, we measure � for capsules poly-
merized at different tw; these have shells with h0=R0 ¼
0:017 and �=h0 ranging from 0.2 up to 0.84. We impose a
fixed osmotic pressure � � 0:86 MPa>��. We observe
that � decreases only slightly with increasing tw < 103 s;
however, as tw is increased above this value, � drops
precipitously over 1 order of magnitude, as shown by the

points in Fig. 1(f). To quantitatively compare these data to
Eq. (1), we estimate the dependence of �=h0 on tw using
lubrication theory; we validate this calculation using direct
measurements of �=h0 for capsules prepared at varying tw
[25,35]. Remarkably, we find good agreement between our
data and Eq. (1), with k � 3:5� 10�24 m2, as shown by
the black line in Fig. 1(f); in particular, this simple picture
captures the strong decease in � at tw � 103 s, with a shell
permeability consistent with our independent measure-
ments (Fig. S8, in Ref. [25]). While these results do not
rule out other possible functional forms of �, they further
suggest that the time delay before the onset of buckling can
be understood by combining shell theory with Darcy’s law
for flow through the capsule shell, even for very inhomo-
geneous shells.
The shell thickness inhomogeneity may continue to

guide the development of deformations in a capsule after
it buckles. To explore this possibility, we use optical mi-
croscopy to monitor the evolution of the capsule morphol-
ogies after the onset of buckling. Slightly inhomogeneous
capsules typically buckle through the sudden formation of
a single circular indentation. As this indentation grows
over time, its perimeter eventually sharpens into straight
ridges connected by 2-3 vertices [14,19,36]; this folding
pathway is exemplified by capsules polymerized in situ,
characterized by �=h0 � 0:2, as shown in Fig. 2(a). This
sharpening reflects the unique physics of thin shells: be-
cause it is more difficult to compress the capsule shell than
it is to bend it, localizing compressive deformations only
along sharp lines and points on the capsule surface requires
less energy than uniformly compressing the shell [37].
Interesting differences arise for very inhomogeneous cap-
sules polymerized after tw ¼ 1 day, characterized by

FIG. 2 (color online). Folding pathways for different shell
inhomogeneities. (a)–(c) Optical microscope images exemplify-
ing buckling at � � 0:86 MPa of (a) slightly inhomogeneous
capsules polymerized in situ (tw � 0), with �=h0 � 0:2,
(b)–(c) very inhomogeneous capsules polymerized after a wait
time tw ¼ 1 day, with �=h0 � 0:84. Very inhomogeneous cap-
sules buckle through the formation of either (b) one single
indentation or (c) two indentations. �t is the time elapsed after
buckling. Scale bars are 35 �m. (d)–(e) Examples of simulated
shells with similar geometries as the capsules shown in (a)–(c),
for varying fractional volume reduction �V=V0. Color scale
indicates the spatially varying shell thickness.
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�=h0 � 0:84. The initial folding pathway is similar; how-
ever, the perimeters of the indentations formed in these
capsules sharpen into straight ridges connected by 4-5
vertices, more than in the slightly inhomogeneous case,
as shown in Fig. 2(b). Moreover, surprisingly, roughly 30%
of the very inhomogeneous capsules begin to buckle
through the formation of one, then two, adjacent indenta-
tions, as exemplified in Fig. 2(c). The perimeters of these
indentations grow over time, eventually meeting, coales-
cing, and sharpening into straight ridges connected by 4-5
vertices [Fig. 2(c)]. These observations directly demon-
strate that the deformations of a capsule after it buckles are
sensitive to the shell inhomogeneity.

To gain insight into this behavior, we perform numerical
simulations of two different shells, a slightly inhomoge-
neous shell with �=h0 ¼ 0:20, and a very inhomogeneous
shell with �=h0 ¼ 0:82, similar to the experimental cap-
sules. As the shell volume is reduced below V0-�V

�, both
shells buckle through the formation of a single indentation
centered at the thinnest part of the shell, as shown in the
leftmost panels of Figs. 2(d) and 2(e). As �V increases,
this indentation grows and its edges sharpen. We find that
the indentations formed in the very inhomogeneous shells
begin to sharpen at smaller�V=V0, and ultimately develop
more vertices than those formed in more homogeneous
shells [Figs. 2(d) and 2(e)] [25]. These results qualitatively
agree with our experimental observations [Figs. 2(a)–2(c)],
further confirming that after the onset of buckling, the
folding pathway of a shell depends on the inhomogeneity.
However, in contrast to the experimental capsules [Fig. 2(c)],
we do not systematically observe the formation of adja-
cent indentations in the simulations on very inhomogene-
ous shells [38]. This presents a puzzle requiring further
inquiry.

Our capsules may be used to guide colloidal self-
assembly; for example, a colloidal particle can spontane-
ously bind to the indentation formed during buckling
through a lock-and-key mechanism [39]. This mechanism
is typically applied to a homogeneous colloidal particle,
which buckles through the formation of a single indenta-
tion at a random position on its surface. We apply our
findings to create multiply indented capsules having two-
fold or threefold symmetry. To do this, we form double
emulsions with two or three inner droplets of radii larger

than half the radius of the outer droplet. Consequently, the
inner droplets pack closely to form dimers or trimers [40],
as shown schematically in Fig. 3. The double emulsions are
then polymerized, forming solid capsules with two or three
spherical compartments in their interiors, and two or three
equally spaced ‘‘weak spots’’ in the capsule shell [arrows
in Fig. 3]. When exposed to a sufficiently large osmotic
pressure, these capsules buckle through the formation of
multiple, equally spaced indentations at the weak spots, as
shown in Fig. 3. This approach is thus a versatile way to
create capsules of desired symmetries, and extends the
range of structures that can be used for lock-and-key
colloidal assembly.
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