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An arch will grow on a rapidly deployed thin string in contact with a rigid plane. We present a

qualitative model for the growing structure involving the amplification, rectification, and advection of

slack in the presence of a steady stress field, validate our assumptions with numerical experiments, and

pose new questions about the spatially developing motions of thin objects.
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The deployment of a quasi-one-dimensional object from
a roll or pile is a canonical event, important for textile
manufacture [1–3], tethered satellite control [4–6], inter-
continental telecommunications [7–9], aerial refueling,
boating, and gardening. Despite this ubiquity, we were
recently surprised by an observation of these dynamics,
as embodied by a rapidly straightened chain on a tabletop
[10]. The surprise in question is displayed in Fig. 1. One
free end of an orderly monolayer of chain is rapidly pulled
along a table, leading to the formation of a slowly growing,
wobbling, noisy arch near the pickup point. The phenome-
non is not unique to chains, and may be observed in strings,
ropes [11], and similar objects; we will use the words
‘‘chain’’ and ‘‘string’’ interchangeably in what follows.
We will suggest a mechanism for this robust behavior by
considering the simplest analytical and numerical systems
resembling that of Fig. 1: an inextensible string, and a
chain of beads and springs.

Given a time-dependent curve Xðs; tÞ parametrized by
arc length s, the wave equation

�@2tX ¼ @sð�@sXÞ (1)

describes a balance of inertia and line tension in a string of
uniformmass density�. The stress�ðs; tÞ, morally equiva-
lent to the pressure in a one-dimensional fluid, is a multi-
plier field enforcing the metrical constraint @sX � @sX ¼ 1
[12–22]. This equation is, in principle, derivable as the
zero-radius limit of an elastic rod, or the continuum limit of
a chain of rigid links. Taking an arc length derivative of
Eq. (1) and projecting along the unit tangent @sX yields the
auxiliary equation

@2s�� ��2 ¼ ��@t@sX � @t@sX; (2)

the solution of which serves to impose the con-
straint [12,13,17–22]. The ‘‘screening potential’’ of
this Poisson-like equation is the squared curvature
�2 ¼ @2sX � @2sX, while the ‘‘source’’ term on the right-
hand side has been rewritten in terms of the magnitude of
the rate of change of the unit tangent using @t@sX � @sX ¼ 0.
From this form, it appears that the stresses induced
by inertial motions of the string will be tensile unless
one imposes compression through boundary or initial

conditions. Positivity of the stress is proven for one fixed
and one free end [22], and the proof may be extended to
other conditions [23]. Hence, we will not generally be
concerned with unstable evanescent dynamics that might
arise from imaginary wave speeds in Eq. (1).
Relevant to our problem are a class of solutions to

Eqs. (1) and (2) for which the curve motion is a pure
tangential velocity T, so that @tX ¼ T@sX. Here, X is
arbitrary and T and � ¼ �T2 are uniform along the curve
[24,25]. The shape X itself is simply one of two waves,
namely that which travels at speed �T with respect to the
Lagrangian frame of Eq. (1) moving at speed T along the
curve. It is thus stationary in the laboratory frame; this and
the linear dispersion inherent when � is uniform are used
to great effect in certain kinetic sculptures [26–28].
How important is gravity? The addition of a uniform

term �g to the right-hand side of Eq. (1) breaks the

FIG. 1. Still images from a video [10] showing configurations
of a (real) chain compactly arranged on a table before (top) and
during (bottom) a straightening process. A vertically oriented
arch is apparent in the lower image. Chain links are �2 mm, the
amplitude of the initial condition is �5 cm, and the imposed
velocity of the pulled end is �8 m=s.
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degeneracy in X and may generate compressive stresses.
The remaining stationary-shape solutions of this
augmented equation are the catenaries [8,21,24,29] with
the tangential velocity T determining the tension, not
the shape. Given that compression (�< 0) corresponds
to catastrophic failure, we can naively assume in-
ertial stabilization of a symmetric catenary arch
� ¼ a

a2s2þ1
, with a a negative constant, bearing a tension

� ¼ �ðT2þ kgk
ffiffiffiffiffiffiffiffiffiffiffiffi

a2s2þ1
p

a Þ, as long as the length parameters

of the shape fall within a circle whose radius is the natu-
ral length scale defined by the velocity and gravity:

ð1aÞ2 þ s2 � ð T2

kgkÞ2. At this point, it is worth recalling the

scales involved in Fig. 1. The terminal ‘‘free-stream’’
tangential velocity T � 8 m=s, g is Earth gravity
(� 10 m=s2), and � � �10=m for the duration of the
experiment. Hence, the ratio of inertial to gravitational

accelerations, T2�
kgk , is at least on the order of 50–100. So

gravity is neglectable in this system, due to the large
curvature that spontaneously emerges early in the process.
Gravity will only become relevant given sufficient growth
time, or a stiffer curve with a bending or twisting length
scale that could set a lower bound on the initial emergent
curvature. Adding a rigid motion with comparable velocity
to the analysis—awobbling perpendicular to the catenary’s
plane, for example—does not change the order of magni-
tude of the relevant terms.

Returning to our original equations (1) and (2), let us
consider an initially planar curve X with a small perturba-

tion �bb̂ oriented perpendicularly to the plane containing
X. To first order in the perturbation, we have the decoupled
equations

�@2t �b ¼ @sð�@s�bÞ; (3)

@2s��� ���2 ¼ 0; (4)

which imply that �� ¼ 0 and the height function �b
moves through a stress background determined entirely
by the planar dynamics. What should this stress profile
look like for an unfurling planar string? Modulo the peri-
odic component of the motion induced by the initial chain
layout, material particles take heteroclinic trajectories be-
tween two arbitrary stationary shapes with tangential ve-
locities of zero in the pile and the imposed pulling velocity
T downstream. These shapes correspond to stresses of
zero and �T2, respectively. Although one might expect
velocity and stress discontinuities right at the moving front,
we do observe a smooth transition region for the velocity
in the experiment [10], which presumably corresponds to a
smooth transition in stress. A nonperiodic, or temporally
averaged, part of the dynamics appears to be nearly steady;
the arch grows slowly and remains within a nearly constant
distance from the front. Additionally, Eqs. (1) and (2)
indicate that time-dependent curves correspond to nonuni-
form, but not necessarily time-dependent, stress profiles;

large periodic deformations of the string do not imply
similar features in the stress. Thus, we introduce the trav-
eling wave variable � � sþ Tt and provisionally presume
a steady stress �ð�Þ in the corresponding frame. In this
frame, Eulerian with respect to the curve but not the
laboratory, we may approximate the slowly evolving
dynamics of Eq. (3) with the equation

@�

�

@t�b� �ð�Þ ��T2

2�T
@��b

�

¼ 0: (5)

This is a short-time description of �bð�; tÞ that presumes
smallness of second order time derivatives. It admits gen-
eral solutions, for which the characteristics converge at

infinite time, of the form �b ¼ fðtþ R

� d�0 2�T
�ð�0Þ��T2Þ,

with f an arbitrary function. Figure 2 compares the evolu-
tion of a wave packet under Eq. (3) and the integrated form
of Eq. (5) for a tanh-shaped �ð�Þ that interpolates between
zero and the free-stream stress �T2. Agreement is good
for early times, when the packet is squeezed into a
smaller footprint behind the free stream. The disturbance
eventually reaches a nearly stationary configuration via a
complicated modulated motion, not captured by the first
order transport equation (5). Note that squeezing the packet
does not increase its amplitude.
These transient, geometrically linearized dynamics are

best expressed in a new variable, the ‘‘slack’’ l � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið@s�bÞ2
p

taken up into the height function. In terms of l, Eq. (5)
takes the form

@tl ¼ @�

�

�ð�Þ ��T2

2�T
l

�

: (6)

Given a monotonically increasing �ð�Þ<�T2, the
right-hand side of Eq. (6) is composed of an amplification
and an advection term. These are the ingredients for a
convectively unstable system [30–33]. However, in con-
trast to the open-flow systems usually considered in this
context, both the amplification and advection coefficients
in Eq. (6) drop to zero as the material particle moves
downstream through a stress field that smoothly ap-
proaches its free-stream value. The slack pools behind
the free stream, as shown in the lower inset of Fig. 2.
This should correspond to a location near the upstream
base of the arch.
In the experiment, this transient, localized slope ampli-

fier was coupled to a height rectifier, namely a table. Is this
sufficient for the formation of an arch? To explore this
question, we have implemented a simple Verlet integration
[34] of massive beads and stiff springs. Thus, while in-
troducing extensibility, we exclude bending and twist
elasticity, air drag, frictional interactions with the table,
and any other messy and experimentally unavoidable phys-
ics. The 5000 beads begin sinusoidally arranged in a plane
defined by the potential minimum created by a constant
‘‘gravity’’ perpendicular to a hard plane ‘‘table,’’ an
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exponential with argument 100 at a penetration depth of
one spring rest length. A velocity in the direction of the
sine’s argument is imposed on one end bead. A small
quantity of uniform noise is added to the vertical force
density on each bead at all times, and there is also a
damping coefficient which falls exponentially towards
zero from an initial value of a few percent.

The snapshot of the shape, stress, and height in Fig. 3 is
the result of a simulation with an initial layout amplitude
and frequency of �6 cm and �0:6 cycles=cm, parameters
similar to Fig. 1. We have set � ¼kgk¼ T ¼ 1, and the
half-width of the uniform noise distribution is 10�3. The
extensions of the springs are used as a proxy for stress, and
these data are spatially averaged. An initial attenuating
pulse travels down the chain, leaving a nearly quiescent
wake, followed by a rapid transition to the free-stream
stress �T2. This very noisy stress plateau also carries
oscillations due to the undamped lateral motions of the
chain arising from its initial configuration. An arch does
indeed form, on the downstream side of the transition. The
effect of gravity in the simulation is rather minimal, affect-
ing only the qualitative shape of the arch. However, in
simulations without the table and gravity potentials, the
slack isn’t rectified, and no arch forms. The dynamics are
quite robust with respect to changes in the spring constant.
The simulations shown in this Letter involve strains of
about 2.5% in the plateau, but the important features are
quite similar for strains an order of magnitude larger or
smaller. We note in passing that the damping term in the
dynamics causes effects comparable to those of a noise
source. The qualitative behavior shown here persists as
long as the noise is above a threshold value, which is on
the order of 10�8–10�9 in the absence of damping.
We return to our assumption of a steady stress distribution

in the traveling wave frame. Figures 4 and 5 show snapshots

FIG. 2. The gray curves on all five plots are the same normal-
ized stress, shifted by unity for visual convenience: �

�T2 � 1,

where � ¼ �T2

2 ½1þ tanhð�10Þ� and � � sþ Tt. TOP FOUR

PLOTS: The evolution of a wave packet �bðs; tÞ under Eq. (3)
(full black curves) and the integrated form of Eq. (5) (dashed
black curves), for � ¼ T ¼ 1, at times t ¼ 10, 30,50,70, as
viewed in a frame Eulerian on the string, with the downstream
direction to the right and the horizontal axes representing s. The
initial conditions at � ¼ s are �b ¼ 2b0 for Eq. (3) and �b ¼ b0
for Eq. (5), where b0 � 1

20 sechð3�10Þ cosð2�Þ. LOWER RIGHT

INSET: The evolution of the slack variable l � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið@s�bÞ2
p

under
Eq. (6) (full black curves) for � ¼ T ¼ 1, at times t ¼ 50,
150,250, as viewed in a frame Eulerian on the string, with the
downstream direction to the right and the horizontal axis repre-
senting � � sþ Tt. The initial condition at � ¼ s is uniform:
l ¼ 1

100 .

FIG. 3. Numerical results. Height (gray curve, normalized by
the initial layout amplitude), stress (black dots), and averaged
stress (black curve, moving average over 50 beads, normalized
by the theoretical free-stream stress �T2 ¼ 1) after 150 ms for a
configuration with an initial layout amplitude and frequency of
�6 cm and�0:6 cycles=cm. The velocity boundary condition is
imposed on bead # 5000. A portion of the corresponding three-
dimensional shape is shown in an oblique view in the upper left
inset. Spring rest lengths are 2 mm, and the strain corresponding
to a stress of 1 is 2.5%. The raw stress data extend from
approximately �9 to þ11 in the noisy plateau region. Noise
from a uniform distribution of half-width 10�3 is added to
vertical force densities; this may be compared to � kgk¼ 1
and spring force densities on the order of 107.
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of two chains at three identical times. The chain of Fig. 4 is
that of Fig. 3, while that of Fig. 5 corresponds to an initial
arrangement with a similar amplitude but lower frequency,
�6 cm and �0:1 cycles=cm, and the same level of added
noise. The high-frequency chain appears to sustain a steady,
or perhaps very slowly growing, transition region between
low and high velocity, and is highly receptive to noise. The
transition region moves approximately 6–7 beads=ms up-
stream, not much faster than the traveling wave coordinate
(5 beads=ms). The transition region on the low-frequency
chain steadily widens as the chain unfurls, its leading edge
moving significantly faster upstream (9–11 beads=ms), and
out-of-plane growth is slower to develop and less pro-
nounced. Over the time interval shown, this region retains
much qualitative information about its initial shape even as
the material within it has achieved highly tangential veloc-
ities. The stress on this chain appears to reflect this ordered
arrangement, but the nature of the pulse train in Fig. 5
remains unknown. The validity of our steady stress assump-
tion apparently depends on the initial conditions, specifi-
cally the curvature, or screening, of the string. It is also
worth noting that, for both of the initial layouts shown, there
are regions of chain in which the averaged stress becomes
compressive for brief periods. These appear to behave as
sources of slack for the system to amplify.

Our preliminary study has raised several questions.
Perhaps most interesting is the issue of how to analyze
the planar dynamics we see in the insets of Figs. 4 and 5,
and the associated stress generation, in terms of the time-
dependent screening and source terms of Eq. (2). There is
some sort of signal being transmitted along our string,

conveying information about the velocity boundary condi-
tion. The process of transmission is highly dependent on
the evolving shape of the curve, and thus more complicated
than transverse impulsive loading of a straight string [35].
Interesting physics arises from gradients in the stress,
which are absent in the Klein-Gordon-type equations de-
scribing the perturbative dynamics around stationary states
of elastic rods [36], though we note that a uniform but time-
varying tension is known to cause instabilities of planar
motions of fixed-end strings [37]. What slowly evolving
stress distributions can be sustained by moving elastic
curves? And which spatially developing motions will
inevitably bear structures like our arch? Are there analo-
gous phenomena in elastic sheets, nets, fluid membranes,
or the Navier-Stokes equations in certain geometries?
Incompressibility of the system appears merely an analyti-
cal convenience, not a strict requirement. Do short-lived
zones of compressive stress only appear in compressible
systems, and are they important? Finally, we have disre-
garded the periodic aspects of the curve’s motion, and still
lack an explicit description of the role of the rectifying
potential. Is it possible to describe the arch growth as a
secular result of some forcing by the table, perhaps on the
highly curved turning points, or is the resemblance to a
resonance superficial?
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FIG. 4. Numerical results. Height (gray curves, normalized by
the initial layout amplitude) and averaged stress (black curves,
moving average over 50 beads, normalized by the theoretical
free-stream stress �T2 ¼ 1) after 55, 175, and 295 ms for a
configuration with an initial layout amplitude and frequency of
�6 cm and �0:6 cycles=cm. Top views of a portion of the
corresponding shapes are shown in the upper insets. Other details
as for Fig. 3.

FIG. 5. Numerical results. Height (gray curves, normalized by
the initial layout amplitude) and averaged stress (black curves,
moving average over 50 beads, normalized by the theoretical
free-stream stress �T2 ¼ 1) after 55, 175, and 295 ms for a
configuration with an initial layout amplitude and frequency of
�6 cm and �0:1 cycles=cm. Top views of a portion of the
corresponding shapes are shown in the upper insets. Other details
as for Fig. 3.
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