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We study spatial multimode quantum memories based on light storage in extended ensembles of A-type
atoms. We show that such quantum light-matter interfaces allow for highly efficient storage of many
spatial modes. In particular, forward operating memories possess excellent scaling with the important
physical parameters: quadratic scaling with the Fresnel number and even cubic with the optical depth of
the atomic ensemble. Thus, the simultaneous use of both the longitudinal and transverse shape of the
stored spin wave modes constitutes a valuable and so far overlooked resource for multimode quantum

memories.
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Introduction.—Photons are ideal candidates for carrying
quantum information. In order to store and process the
information, a quantum storage medium is, however,
needed. To achieve this, one needs to establish a control-
lable and efficient light-matter interface that will store light
as a stationary excitation in a medium while preserving
quantum correlations. Quantum memories have already
been demonstrated in a number of experiments based on
atomic ensembles, see, e.g., Refs. [1-7], as well as solid
state systems, see, e.g., Refs. [8—10]. Most of the realized
memories support only a single mode, but it is highly
desirable to be capable of storing as many modes as
possible as this will increase the speed of quantum com-
munication and facilitate quantum computation [11-13].
To this end, several protocols have proposed exploiting
various degrees of freedom to achieve multimode opera-
tion: spatial [14] or directional [13,15] modes as well as
frequency-multiplexing in the context of controlled revers-
ible inhomogeneous broadening (CRIB) [16,17] and time-
binning with atomic frequency combs [18]. The latter has
been successfully realized experimentally with the storage
and retrieval of four temporal modes [19]. In addition,
experimental realizations of memory qubits involving
two coexisting spatial modes have been reported [20,21].
These results point toward promising applications of multi-
mode quantum memories, but a full assessment of the
potential of these requires an evaluation of the achievable
memory capacity. Until now, this has only been performed
in the one-dimensional (1D) case [22].

Here, we study the full capacity of the additional re-
source given by the spatial extent of atomic ensembles. We
show that combining the longitudinal and transverse de-
grees of freedom allows for highly efficient storage of
many spatial light modes resulting in capacities higher
than previously expected. The number of modes one can
store with high efficiency depends on the choice of the
direction of retrieval relative to that of the storage process.
We demonstrate that forward operating memories, with the
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retrieved light traveling in the direction of the input signal,
provide an excellent multimode memory resource. It has a
remarkable scaling with the important physical parame-
ters: the peak optical depth d and the Fresnel number of
the atomic ensemble F. For broad ensembles (F >> 1) each
transverse mode can be described by the aforementioned
1D theory, which predicts the longitudinal mode capacity
for backward retrieval to scale with \/d,, for Raman mem-
ories as well as for protocols based on electromagnetically
induced transparency (EIT) and with d, for CRIB proto-
cols [22,23]; in this Letter, we will consider the former two.
The dependence of the capacity on the Fresnel number has
only been roughly estimated in Ref. [24] to be the number
of transverse modes ~F? for forward retrieval and ~F for
backward retrieval. From the 1D calculations one would
naively estimate the three-dimensional capacity to be given
by the number of transverse modes times the longitudinal
capacity for each mode resulting in scalings of F2./d, and
F./d, for forward and backward retrieval, respectively.
Here, we show by direct calculation that the simultaneous
use of the transverse and longitudinal shape of the stored
spin wave mode leads to quantum memories with capaci-
ties scaling as F2d} for the forward direction. This is a
much stronger scaling resulting in significantly higher
memory capacities and, thus, far more promising forward
operating memories than one would expect from previous
work.

For comparison, we also study the backward operating
spatial memory, with the retrieved light traveling in the
opposite direction of the input light. Contrary to what is
seen in the 1D limit [22], backward operation generally
possesses lower capacities, but we show that it can also serve
as a high capacity multimode memory although with a
slightly less promising scaling with the physical parameters.

Model.—In order to analyze the capacity of spatial multi-
mode quantum memories, we use the three-dimensional
theory for Raman and EIT quantum memories based on
A-type atomic ensembles presented in Ref. [25]. There, it
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was shown that the crucial physical parameters determining
the quality of the quantum memory are the optical depth d,
and the Fresnel number of the atomic ensemble F.
We consider a cylindrically symmetric atomic ensemble
with a Gaussian distribution in the radial direction
n(p) = nyexp[—p?*/(207%)] [see Fig. 1 (left)], where ny =
Na/(@mLo?), Ny is the number of atoms, L is the length,
and 0| < L describes the width of the cigar-shaped en-
semble, e.g., corresponding to dipole trapped samples
[26,27]. The density along the longitudinal z axis has been
assumed constant for simplicity. The geometry of the en-
semble is described by its Fresnel number F = o3 /(A¢L),
where A is the wavelength of the quantum light. The weak
quantum field carries the quantum information to be stored
into the atomic ensemble and couples states |0) and |e) with
coupling strength g, see Fig. 1 (right). States |1) and |e) are
coupled by the strong classical control field, which sets the
propagation direction of the retrieved light. {)(¢) is the Rabi
frequency of the driving field and A denotes the detuning
from the excited state |e), which spontaneously decays at a
rate y. The empty quantum memory is initialized to have all
atoms in state |0); storage is achieved by the absorption of
photons from the light field, which entails the transfer of
atoms from |0) to the state |1) via the intermediary state |e).
More precisely, each photon is stored in a collective state of
the ensemble represented by stationary spin wave excita-
tions described by S ~ ¥;|0);(1| [1]. Working in the un-
saturated limit, this atomic “‘spin’ can be approximated as a
set of harmonic oscillators.

For simplicity, we solve the three-dimensional problem of
the multimode quantum light-matter interface within the
adiabatic approximation, where the excited state |e) is elim-
inated. To describe the transverse degrees of freedom we
expand the slowly varying light field and spin wave operators
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FIG. 1 (color online). (left) Atomic ensemble of cylindrical
symmetry with Gaussian density distribution of length L and
width o ; (gray/red cloud in the middle). Full lines: Multimode
operation is achieved by focusing beams to a transverse size
r; < o, . For high optical depth it is an advantage to use light
beams which are only focused inside the sample for a distance
Ld.;./d shorter than the length of the sample, so that one can
store multiple modes along the axis (dashed and dotted lines, see
text for details). (right) A schematic plot of the level scheme of
the considered A-type atoms.

on a complete set of transverse mode functions a(7, t) =

> ttn(p, B (2 0)s S(ED =3 tt(p, $)S,n (2 1). The
light field and spin wave operators are then represented by
vectors, @'(z, 1) = {a,,,(z, )}, §'(z, 1) = {8$,,,(z, 1)}, contain-
ing a set of harmonic oscillator annihilation operators
obeying 1D equations. These equations of motion within
the paraxial approximation (in the comoving frame ¢ =
t — z/c) read [25]
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Here, we have introduced the dimensionless time 7 = v/,
detuning A = A/, position Z = z/L, and Rabi frequency
Q(7) = Q(7)/y. The peak optical depth dy = 4Lnolg|*/y
quantifies the absorption of resonant light in the absence of
the control field ()(7). We omit here the quantum noise since
itis not needed for calculating the efficiency [28]. Due to the
sample symmetry as well as for numerical reasons, we have
chosen a set of Bessel beams indexed by n and the azimuthal
quantum number m. Furthermore, working in the paraxial
regime and assuming a monochromatic signal, we have
approximated k|, — k = —k%,,./(2k) = —k7 ../ (2ko),
which allows us to account for the different transverse wave
numbers of the modes through the term in Egs. (1) containing
the diagonal matrix kK1 = {k? 1 mnt- The last terms in the
above equations of motion describe the coherent interaction
between light and matter, which is quantified by the optical
depth, Rabi frequency, detuning, and the matrix B,,,, s,y =
[ d?Fy w(FL )ity (FL)n(7 1) /0o describing the coupling
between modes. The fact that this coupling matrix is inde-
pendent of the axial position Z renders the problem solvable
in terms of a simple matrix exponential.

In order to solve the equations of motion [Egs. (1)], we
Laplace transform in time L{g(r)} = [i e “'g(r)dt,
which allows us to eliminate the dlfferentlal equation for
the spin wave. Here, we have assumed a constant driving
field in space and time Q.In consequence, we can write the
relation between the light modes and the spin wave (here
for the forward operating memory) in the form of input-
output beam splitter relations

(@) = L LazKI, &, 2150() ®)

, 1 fio .
S0 =5 [T daT0 6,1 - (@), )
27 ) -

The transformation matrix K depends on frequency @,
position Z, and the physical parameters of the system (),
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A, F, and dy. The analytical expressions for the matrix as
well as the beam splitter relations for the backward readout
are presented in detail in Ref. [25]. The efficiency of the
quantum memory is the ratio between the number of out-
going and incoming light field excitations, which, assum-
ing a normalized incoming light mode, can be written as

n= [l ®P~ [ [ dvdva oMy o). @
0

Here, the kernel matrix M gives full information about
the relation between the input and output modes for a given
set of physical parameters. After discretizing frequency
and position, we diagonalize the large kernel matrix,
which for forward retrieval is M[v, v'] ~ K*[Q*, v,
1 = ZIKMQ, @, 2] K[O, &, ZTIKT[Q7, ¢/, 1 — Z']. A set of
characteristic efficiencies is thereby obtained as the eigen-
values of this matrix together with the corresponding set of
incoming light modes &;,(v). The optimal incoming light
mode to store into the atomic ensemble corresponds to the
eigenvector with the highest eigenvalue, which is the
maximal efficiency of the memory. The remaining eigen-
vectors correspond to orthogonal modes that can be stored
with lower efficiencies. We show in the following that, in
general, there exist many light modes that give high effi-
ciencies of the quantum memory.

The figure of merit for multimode quantum memories is
the capacity, which can be defined in at least two different
ways. Firstly, one can simply count the number of modes
with an efficiency above a minimal value 7,;,. Secondly, a
more sophisticated measure can be obtained from the
quantum capacity of a Gaussian channel with efficiency
7, Q(n) = max{0, logy|n| — logy|1 — nl} [29]. O(n) is
the average number of qubits that can be perfectly stored
and retrieved from a particular mode with combined stor-
age and retrieval efficiency 7), provided one has access to
many copies of such memory and optimal encoding, de-
coding, and error correction of the stored information. The
capacity of the memory is obtained by summing the ca-
pacities for all modes; only modes stored and retrieved
with a combined efficiency above n = 0.5 contribute due
to the no-cloning theorem [30], so that C = 3", ~5Q(7,).
This capacity serves an important role as an upper limit for
the memory. While the full capacity is hard to exploit
experimentally, it provides a guide to the difficulty of
achieving a certain capacity in practice since this increases
near the theoretical optimum. We find below that the
capacity is very high (>10°) for reasonable parameters
(F =1, dy = 100). This is much higher than the number
of modes which can be handled experimentally. Hence,
spatial quantum memories provide an almost unlimited
resource for multimode operation even without approach-
ing the theoretical maximum.

Results.—In order to gain insight into the multimode
character we first calculate the capacity and the number of
good orthogonal modes within subspaces with a fixed
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FIG. 2 (color online). The number of modes with efficiency
1 > 0.5 (squares and circles) and the capacity C,, (diamonds and
stars) for different values of the azimuthal quantum number m
for forward (blue, bottom and left axes) and backward (black,
top and right axes) operating memory with d, = 100 and F = 1.

azimuthal quantum number m, see Fig. 2. All numerical
results are obtained for resonant memories, A= 0, the EIT
case. The number of modes with high efficiency decreases
with growing |m| since light beams with [m| > 0 vanish to
increasing degree toward the center of the atomic en-
semble. Therefore, it is harder to focus the input light
mode into the dense center of the atomic cloud, leading
to a decreased effective optical depth d,. One can see that
for dy = 100 and F = 1, the forward operating memory
yields higher capacities than the backward one. This can be
explained by the fact that the driving light used for the
backward retrieval reverses the longitudinal phase of the
stored excitation but cannot properly reverse its transverse
profile except for a spin wave with a uniform transverse
phase. Thus in the case of any transverse phase gradient of
the stored spin wave, the irreversible transverse phase leads
to unwanted diffraction effects [25], which in consequence
reduce the efficiencies and the number of modes that can
be stored in a backward operating memory.

The total capacity of forward operating quantum mem-
ories Cy is presented in Fig. 3 (red closed circles and stars)
as a function of the Fresnel number of the atomic ensemble
F for two values of the peak optical depth, d, = 40 and
100. In both cases, the total capacity C; reaches high
values and grows quadratically with the Fresnel number,
Ci~F 2. To investigate whether the scaling is independent
of the two capacity measures, we also plot the number of
modes Ny for dy = 100 for two values of the threshold
efficiency 7,,;, = 0.5 and 0.6. We see that the quadratic
scaling with the Fresnel number F is universal so that
either of these may be used as the appropriate measure of
the capacity.

The scaling with the Fresnel number depends, however,
on the direction of the readout. To compare the two oper-
ating modes of the memory, we also calculated the capacity
of the backward memory (black open circles and stars), see
Fig. 3. We find that in this case, the capacity only scales
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FIG. 3 (color online). The capacity C; for forward (red closed
circles and stars) and C}, backward (black open circles and stars)
operating memories as functions of the Fresnel number F for
doy = 40 (circles) and dy, = 100 (stars). The number of modes for
the forward memory N, , for d, =100 with the threshold
efficiency 7, = 0.5 (light gray stars) and 7,;, = 0.6 (light
gray triangles). The dashed lines are quadratic Cy ~ F? and
linear C;, ~ F fits for the forward and backward direction of
the readout, respectively.

linearly with the Fresnel number, but it still reaches high
values. Thus, even though the highest single mode effi-
ciency for larger Fresnel numbers is achieved for backward
operating memories [25], the number of good modes is
larger for the forward memories for large F.

The scaling of the capacity can be explained by consid-
ering the diffraction of light in the atomic medium. For
forward operating memories, the divergence angle of the
incoming light beam is 6 ~ Ay/r |, where r, is the trans-
verse waist of the stored stationary excitation. The mode
can in this case be so focused that the maximum divergence
angle becomes limited by the geometry of the ensemble:
tand ., ~ Omax < 0 1 /L (we ignore here a dependence on
optical depth which will be included below). From this we
obtain that the minimal achievable waist of the stored
excitation is r i, % AgL/o 1. In consequence, since the
capacity of the memory is proportional to the ratio between
the cross section area of the ensemble and the minimal
waist squared, this leads to a quadratic dependence on the
Fresnel number, C; « o3/ ri’mm ~ F?. As mentioned
above, in the case of backward operating memory, the
problem of the irreversible transverse phase arises [25].
Therefore, one cannot focus the light beam as strongly as in
the case of the forward operating memory. Requiring the
phase to be constant across the transverse profile leads to
Omax & 71 /L and in consequence to the capacity of the
memory Cy * 03 /r] ., ~ F, showing linear dependence
on F.

Above, we have presented the multimode character of
the transverse degrees of freedom in the quantum memory
and its dependence on the Fresnel number of the atomic
cloud. Now, we show that including simultaneously the
transverse and longitudinal modes leads to much stronger
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FIG. 4 (color online). The number of modes for the forward
operating memory with efficiency n = 0.65 for two values of the
Fresnel number F = 0.2 (black triangles) and F = 0.5 (green
stars) and the capacity C;, of the backward operating memory for
F = 0.2 (red circles) and F = 0.5 (blue squares). The dashed
lines are the corresponding fits for the forward N, ~ dj and

backward C;, ~ dg/ ? direction of the readout, respectively.

scaling of the capacity with the optical depth d, than
expected from considering these two degrees of freedom
separately. We have optimized the full three-dimensional
quantum memory and found that the capacity of the for-
ward operating memory has a promising cubic scaling with
the optical depth N, ~ d?), see Fig. 4, much better than
previously expected. (We use this measure since Cj is
numerically cumbersome to calculate.)

This remarkable cubic scaling of the capacity of the
forward operating memory with the optical depth d, can
be understood by noting that for high optical depth it is not
necessary to have the light beams confined within the
transverse size of the sample for the entire length of the
ensemble. Suppose that storage with a desired efficiency
requires a certain critical optical depth d_;,. This optical
depth is achieved for a portion of the ensemble of length
Ld;./dy. Hence it is only necessary to have the light
transversely confined within the ensemble for this shorter
distance allowing for larger divergence angles 6., ~
o dy/Ld, see Fig. 1. (Alternatively, this relation can
be understood by noting that with increasing optical depth
along the axis, the optical depth also grows for beams
incident at an angle. Beams can thus be incident at larger
angles and still see an effective optical depth larger than
d.i-) The larger divergence angle allows for stronger
focusing of the beams down to a size 7y, ~
dyi oL/ o | dy which increases the capacity. Furthermore
since the storage of these tightly focused modes only
involves a small portion of the sample, there will be
dy/d, essentially independent storage media in the lon-
gitudinal direction, see Fig. 1. Combining the capacity of
the transverse and longitudinal degrees of freedom we
arrive at Nt ~ (01 /7 min)*do/deriy ~ F?d3/d2,,. From
an experimental perspective, this capacity reflects that the
ensemble allows for storage of essentially any optical
beam which can be focused into the ensemble and has a
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divergence angle less than 6,,,. All of these modes are
stored simultaneously using only a single control field, but
the ideal temporal shape may be different for different
modes and the exact set of spatiotemporal modes to use
in a given experiment should be optimized given the ex-
perimental constraints. For comparison, we also provide
the results for backward operating memories, see Fig. 4.
Here, the scaling is less promising, C;, ~ dg/ 2, but still high
values of the capacity are achievable.

Conclusion.—We have calculated the capacity of spatial
quantum memories based on A-type, cigar-shaped atomic
ensembles and thereby have shown that they allow for
storage of many light modes and exhibit a remarkable
scaling with the important physical parameters. For mem-
ories operated in the forward direction, the capacity scales
quadratically with the Fresnel number F and cubically with
the optical depth of the atomic ensemble d, which is much
better than previously expected [22]. These results reveal
that the transverse degrees of freedom combined with the
longitudinal ones constitute a valuable resource for multi-
mode quantum memories with excellent capacities. These
results can be directly used in current experiments with
extended ensembles of A-type atoms.
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