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Aging can be realized as a subalgebra of Schrödinger algebra by discarding the time-translation

generator. While the two-point functions of the age algebra have been known for some time, little else was

known about the higher n-point correlators. In this Letter, we present novel three-point correlators of

scalar primary operators. We find that the aging correlators are distinct from the Schrödinger correlators

by more than certain dressings with time-dependent factors, as was the case with two-point functions. In

the existing literature, the holographic geometry of aging is obtained by performing certain general

coordinate transformations on the holographic dual of the Schrödinger theory. Consequently, the aging

two-point functions derived from holography look as the Schrödinger two-point functions dressed by

time-dependent factors. However, since the three-point functions obtained in this Letter are not merely

dressed Schrödinger correlators and instead, depend on an additional time-translation breaking variable,

we conclude that the most general holographic realization of aging is yet to be found. We also comment on

various extensions of the Schrödinger and aging algebras.
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A remarkable example of nonequilibrium criticality
is represented by the phenomenon of aging [1]. Such
nonequilibrium criticality can be observed in a ferro-
magnetic spin system (an Ising model) prepared in a
high-temperature state, which after being quenched to a
temperature at or below its critical temperature, is left to
evolve freely. It is observed that the size of the clusters of
ordered spins (which form and grow) is time-dependent
and scales as time to some power, the inverse of which
defines the dynamical exponent. In addition, the two-point
correlation functions in such systems depend on both time
values (and not only on the their difference, as it is the case
in other critical phenomena which do not break time-
translation) [1,2]. The essential physics of aging (which
is crucially a nonstationary process) [1] has been recently
discussed in the context of the AdS-CFT duality [3,4]. In
this Letter, we clearly distinguish between aging realized
as dressed Schrödinger dynamics from pure aging. In
particular, we explicitly demonstrate this difference at the
level of the three-point function. Our novel results, regard-
ing the three-point function should be of practical impor-
tance in both real and numerical experiments involving
aging dynamics [1].

Let us begin by reviewing the current understanding of
holographic aging [1,3,4]. The Schrödinger group is the
group of symmetries of the free Schrödinger equation
ð2iM@t þr2Þ’Sðt; ~xÞ ¼ 0. The age (or aging) group is
the same as the Schrödinger group, minus the time trans-
lation. To break time-translation invariance, but maintain
scale invariance, a simple modification can be made to the
previous equation by adding a time-dependent potential

vðtÞ [1], so that f2M½i@t � vðtÞ� þ r2g’Aðt; ~xÞ ¼ 0.
(For a general discussion regarding the breaking of time-
translation invariance, consult Ref. [1].) However, vðtÞ
needs to transform the same way as @t and r2, so
vðtÞ¼k=t, where k is an arbitrary constant. The field trans-
formation, which maps these two equations into each other,
is given by ’Aðt; ~xÞ ¼ exp½�i

R
t
t0
d�vð�Þ�’Sðt; ~xÞ ¼

ðt=t0Þ�ik’Sðt; ~xÞ. If one considers operators with a certain

mass M, then OAðt; ~xÞ ¼ ðt=t0Þ�ikMOSðt; ~xÞ. This leads,
straightforwardly, to a relationship between the age

and Schrödinger n-point correlators: GðnÞ
A ðti; ~xi;MiÞ ¼Q

n
i¼1 t

�ikMi

i GðnÞ
S ðt; ~xi;MiÞ, where the t0 dependence can-

cels due to the Bargmann selection rule
P

iMi ¼ 0.
The holographic dual of a system which is invariant

under the realization of age algebra using the above trick
(and which takes into account the singularity at t ¼ 0 in
vðtÞ ¼ k=t) was constructed in Ref. [4]. The relevant age
metric ds2A [4] reads as:

ds2A ¼ R2

z2

�
dz2 þ 2��

z
dzdt� �2

z2

�
1þ �z2

�t

�
dt2

� 2dtd�þ d~x2
�
: (1)

(This geometry is locally Schrödinger, but its global struc-

ture is not.) Then, it is easy to check that �Aðt; �; ~x; zÞ ¼
�Sðt; �þ ��

2 ln�t
z2
; ~x; zÞ obeys the equation of motion

h�A ¼ 0 in the age metric, if �S obeys the equation of
motion h�S ¼ 0 in the Schrödinger background
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ds2S ¼
R2

z2

�
dz2 � �2

z2
dt2 � 2dtd�þ d~x2

�
: (2)

(This can be extended for fields of arbitrary spin.) In terms

of the boundary field values ��S, the bulk Schrödinger field
can be written as

�Sðt;�; ~x;zÞ¼
Z
t0;�0; ~x0

GSðt� t0;���0; ~x� ~x0;zÞ ��Sðt0;�0; ~x0Þ;
(3)

which, after applying the above map becomes

�A

�
t; �� ��

2
ln
�t

z2
; ~x; z

�

¼
Z
t0;�0; ~x0

GSðt� t0; �� �0; ~x� ~x0; zÞ

� ��A

�
t0; �0 � ��

2
ln
�t0

z2b
; ~x0

�
; (4)

where zb is the value of z at the regularized boundary
(zb � 1). Here, GSðt� t0; �� �0; ~x� ~x0; zÞ denotes the
boundary-to-bulk propagator of a field in the Schrödinger
background. Fourier transforming along the � direction,
we find

�Aðt; ~x; z;MÞ ¼
Z
t0; ~x0

exp

�
iM

��

2

�
ln
�t

z2
� ln

�t0

z2b

��

�GSðt� t0; ~x� ~x0; z;MÞ ��Aðt0; ~x0;MÞ:
(5)

This enables us to reconstruct, with relative ease, the holo-
graphic answer for the correlators of primary operators,
with respect to the age algebra from those derived using the
Schrödinger background holography [5,6]. For example,
the three-point function of a scalar operator is

�ðM1þM2þM3Þ�
Y

i¼1;2;3

ðtiÞ�iMð��=2Þ

�
Z
t; ~x;z

GSðt� ti; ~x� ~xi;MiÞ; (6)

assuming that the scalar source, ��ðMÞ, has a cubic cou-
pling in the bulk: Sgrav¼

R½���þ 1
3!��3ðt; ~x;z;MÞþ . . .�.

By using the Bargmann superselection rule
P

iMi ¼ 0
(which in this holographic context is simply the momen-
tum conservation along the S1 direction parametrized by
�), the three-point function is reduced to the previous form.
To get the age correlator, one performs a discrete light cone
quantization projection along � followed by a functional
differentiation with respect to the boundary fields. This

guarantees that the age correlators differ from the
Schrodinger correlators only by time-dependent phase
factors, if the tensor indices are in the ~x directions, as in
the case of scalar operators.
One of the main points of this Letter is that this realiza-

tion of aging does not capture the most general aging
dynamics and that what has been described above is just
a particular realization of the Schrödinger dynamics. In
what follows, we clearly distinguish between this special
case and the most general aging dynamics.
For simplicity, let us consider a (1þ 1)-dimensional

theory with coordinates t, r. We use � to denote the
Fourier variable conjugate to the mass M of a certain
primary operator. In the notation of Refs. [1,7], the
Schrödinger and age algebras are, respectively, spanned
by the generators fX�1; X0; X1;M0; Y1=2; Y�ð1=2Þg and

fX0; X1;M0; Y1=2; Y�ð1=2Þg, which obey the following com-

mutation relations

½Xn;Xn0 � ¼ ðn� n0ÞXnþn0 ; ½Xn; Ym� ¼
�
n

2
�m

�
Ynþm;

½Xn;Mn0 � ¼ �n0Mnþn0 ; ½Ym;Ym0 � ¼ ðm�m0ÞMmþm0 :

(7)

The most general realization of these generators (which is
apparently new) is

X�1 ¼ �@t þ gðtÞ � �

t
þ hðtÞ � �

t
i@�;

X0 ¼ �t@t � 1

2
r@r ��

2
þ gðtÞ þ hðtÞi@�;

X1 ¼ �t2@t � tr@r ��tþ i

2
r2@� þ tðgðtÞ þ �Þ

þ tðhðtÞ þ �Þi@�;
Y�ð1=2Þ ¼ �@r; Y1=2 ¼ �t@r þ ir@�;

M0 ¼ i@� � �M; (8)

where gðtÞ, hðtÞ are arbitrary time-dependent functions and
�, � are arbitrary constants. In arriving at Eq. (8), we have
kept the form of the generators M0 and of the spatial
translation Y�ð1=2Þ and generalized Galilean-invariance

Y1=2 unchanged. This general realization is central for the

new results presented in what follows.
Next, we solve the partial differential constraints im-

posed on the three-point functions (namely, that they are
left invariant by the age generators). The conclusion is that
the most general scalar three-point function is

GAðfti; ri; �igÞ ¼
�Y3
i¼1

t�i

i

�
exp

�X3
i¼1

Z ti
d�

gð�Þ
�

�
� ðt3 � t1Þ�ð1=2Þ�31;2þ�31;2ðt3 � t2Þ�ð1=2Þ�32;1þ�32;1

� ðt2 � t1Þ�ð1=2Þ�21;3þ�21;3�A

�
u1; u2; u3;

t3ðt2 � t1Þ
t2ðt3 � t1Þ

�
; (9)
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where �31;2 ¼ �3 þ �1 � �2 etc. and �31;2 ¼ �3 þ�1 � �2 etc. Here, �A

h
u1; u2; u3;

t3ðt2�t1Þ
t2ðt3�t1Þ

i
is some unconstrained

function of:

u1 ¼ �2ið�2 � �1Þ þ ðr2 � r1Þ2
t2 � t1

þ 2
Z t2

t1

d�
hð�Þ
�

þ 2ð�2 � �1Þ lnðt2 � t1Þ þ 2ð�1 þ �2Þ lnt3 � t2
t3 � t1

� 2�2 lnt2 þ 2�1 lnt1;

u2 ¼ �2ið�3 � �1Þ þ ðr3 � r1Þ2
t3 � t1

þ 2
Z t3

t1

d�
hð�Þ
�

þ 2ð�3 � �1Þ lnðt3 � t1Þ þ 2ð�1 þ �3Þ lnt3 � t2
t2 � t1

� 2�3 lnt3 þ 2�1 lnt1;

u3 ¼ �2ið�3 � �2Þ þ ðr3 � r2Þ2
t3 � t2

þ 2
Z t3

t2

d�
hð�Þ
�

þ 2ð�3 � �2Þ lnðt3 � t2Þ þ 2ð�2 þ �3Þ lnt3 � t1
t2 � t1

� 2�3 lnt3 þ 2�2 lnt2: (10)

For the Schrödinger three-point correlator, we find a similar expression, but without the dependence on the additional
variable t3ðt2�t1Þ

t2ðt3�t1Þ :

GSðfti; ri; �igÞ ¼
�Y3
i¼1

t�i

i

�
exp

�X3
i¼1

Z ti
d�

gð�Þ
�

�
� ðt3 � t1Þ�ð1=2Þ�31;2þ�31;2ðt3 � t2Þ�ð1=2Þ�32;1þ�32;1

� ðt2 � t1Þ�ð1=2Þ�21;3þ�21;3�Sðu1; u2; u3Þ: (11)

Note that despite the presence of the time-dependent prefactors, this correlator is time-translation invariant. In fact, it is
easy to check that a redefinition of the primary fields of the Schrödinger algebra, effected by factoring out appropriate time-
dependent functions, gives the correlators of the type (11). However, this redefinition does not change the fact that
X�1GSðfti; ri; �igÞ ¼ 0. The fundamental difference between age and Schrödinger three-point functions lies in the
dependence of the former on t3ðt2�t1Þ

t2ðt3�t1Þ .
At this stage, we pause to note that the analysis performed at the beginning of this Letter, regarding the form of the age

correlators, was too restrictive. Since the time-dependent potential is introduced by a simple redefinition of the fields,
’Sðt; ~xÞ ¼ exp½iRt d�vð�Þ�’Aðt; ~xÞ, the relevant symmetry group is still the full Schrödinger and not the age group. One of
the consequences of this observation is that the holographic realization of aging [Eq. (1)] is equally restrictive, and thus, the
most general holographic age background is yet to be found. This is further evidenced by the fact that the three-point
correlators implied by the holographic age metric [Eq. (1)] are dressed Schrödinger correlators (i.e., they are fake age
correlators), whereas the ones in Eq. (9) are not.

For completeness, we also present the three-point correlators of the scalar fields in terms of their masses:

GAðfti; ri;MigÞ ¼ 2��

�X3
i¼1

Mi

��Y3
i¼1

t��iþMi�i

i

�
� exp

�Z ti
d�

gð�Þ �Mihð�Þ
�

�
� ðt3 � t1Þ�ð1=2Þ�31;2þ�31;2�ðM�Þ31;2

� ðt3 � t2Þ�ð1=2Þ�32;1þ�32;1�ðM�Þ32;1 � ðt2 � t1Þ�ð1=2Þ�21;3þ�21;3�ðM�Þ21;3

� exp

�
�M2ðr2 � r1Þ2

2ðt2 � t1Þ �M3ðr3 � r1Þ2
2ðt3 � t1Þ

�
� ~�A

�
M2;M3; w;

t3ðt2 � t1Þ
t2ðt3 � t1Þ

�
: (12)

Here, ðM�Þ31;2 ¼ M3�3 þM1�1 �M2�2, and w ¼ ½ðt3�t1Þðr2�r1Þ�ðt2�t1Þðr3�r1Þ�2
ðt3�t2Þðt2�t1Þðt3�t1Þ . For the Schrödinger three-point corre-

lators, one obtains an expression similar to Eq. (12), but with an unconstrained function ~�S ¼ ~�SðM2;M3; wÞ.
We mention, in passing, that there are extensions of both age and Schrödinger algebras which involve the addition of

new generators that ensure the closure of the respective algebras. For example, provided that � ¼ 0 in Eq. (8), we may add

to both algebras N ¼ �t@t þ �@� þ gðtÞ � �0 þ ½hðtÞ þ R
t d� hð�Þ

� þ �0�i@�. The nonzero commutators that involve N are

½N;X�1� ¼ �X�1, ½N;M0� ¼ �M0, ½N; Y1=2� ¼ �Y1=2. In this case, the scalar three-point function of this extension of

age algebra is given by
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ĜAðfti; ri;MigÞ ¼ 2��

�X3
i¼1

Mi

��Y3
i¼1

t��i

i

�
� exp

�X3
i¼1

Z ti
d�

gð�Þ �Mihð�Þ
�

�
ðt3 � t1Þ�ð1=2Þ�31;2þ�31;2

� ðt3 � t2Þ�ð1=2Þ�32;1þ�32;1ðt2 � t1Þ�ð1=2Þ�21;3þ�21;3 � exp

�
�M2ðr2 � r1Þ2

2ðt2 � t1Þ �M3ðr3 � r1Þ2
2ðt3 � t1Þ

�

� w�ð1=2Þð�1þ�2þ�3Þþ�1þ�2þ�3þ2 � ~̂
�A

�
wM2; wM3;

t3ðt2 � t1Þ
t2ðt3 � t1Þ

�
: (13)

For the Schrodinger algebra extended by N, we encounter
again an expression similar to Eq. (13) but with an uncon-

strained function
~̂
�S ¼ ~̂

�SðwM2; wM3Þ. Yet another
closed subalgebra extension of age algebra is obtained by

adding both N and Vþ, where Vþ ¼ �2tr@t � 2�r@� �
ðr2 þ 2i�tÞ@r � 2�rþ 2rðgðtÞ þ �Þ, and where hðtÞ ¼ 0,
� ¼ 0 in Eq. (8), and �0 ¼ 0, �0 ¼ � in the expression
for N. On the other hand, adding both N and Vþ to the
Schrödinger algebra and requiring its closure [8], leads to
the full (1þ 2)-dimensional conformal algebra in a space
parametrized by t, r, � coordinates. The generators take
the form given by Eq. (8), the expressions for N and Vþ,
with � ¼ 0, hðtÞ ¼ 0, �0 ¼ �, �0 ¼ 0, supplemented by

V� ¼ ��@r þ ir@t � ir
t ðgðtÞ � �Þ and

W ¼ ��2@� � �r@r þ i

2
r2@t ���

þ 2��� ir2ðgðtÞ � �Þ
2t

: (14)

The familiar scalar three-point function is dressed by time-
dependent factors which originate in a particular realization
of the generators allowing for nonzero � and gðtÞ:
Gcðfti; ri; �igÞ

¼
�Y3
i¼1

t�i

i

�
exp

�X3
i¼1

Z ti
d�

gð�Þ
�

�

� X
�ð1=2Þ�21;3þ�21;3

21 X
�ð1=2Þ�31;2þ�31;2

31 X
�ð1=2Þ�32;1þ�32;1

32 :

(15)

Here, X12, etc. are the Lorentz invariant intervals X12 ¼
�2iðt2 � t1Þð�2 � �1Þ þ ðr2 � r1Þ2, etc. However, wewant
to stress that the time-dependent factors in Eq. (15) once
again do not signal any breaking of time-translation invari-
ance, and can be obtained by redefining the primary opera-
tors of the type we have encountered earlier in this Letter.

Finally, we would like to comment on the holographic
realization of the age algebra in terms of metric isometries
of a (1þ 3)-dimensional space. The holographic dual
space is parametrized by x	 coordinates: t, r, �, and the
holographic coordinate z. The main observation is that
once one identifies the Killing vectorsK ¼ K	 @

@x	 obeying

the age algebra, one can reverse engineer the metric by
solving the Killing vector equations for the components of
the metric, i.e., ðg
�@	 þ g
	@�ÞK
 þ K
@
g	� ¼ 0. It is

natural to assume that Y�ð1=2Þ and M0 are bulk Killing

vectors. If one makes the additional assumption that Y1=2,

given by Eq. (8), is a bulk Killing vector then the problem
becomes quite tractable. The bulk forms of the Killing vec-

tors X0 and X1 are X0 ¼ �t@t þ X�
0@� � 1

2 r@rþ Xz
0@z and

X1 ¼ �t2@t þ X�
1@� � tr@r þ Xz

1@z, where Xz
0 ¼ @tðtgrrÞ

@zgrr
,

Xz
1 ¼ @tðt2grrÞ

@zgrr
, and

X�
0 ¼ i

2t@zgrr

�
�@zðgrrSÞ � t@tgrr@zSþ t@tS@zgrr

þ 2tT@zgrr þ 2tC1@zgrr

�
;

X�
1 ¼ i

2@zgrr

�
�z2@zgrr � 2grr@zS� S@zgrr � t@tgrr@zS

þ t@tS@zgrr þ 2tT@zgrr

�
: (16)

Here, grr ¼ grrðt; zÞ, S ¼ Sðt; zÞ, T ¼ TðtÞ, and C1 is an
arbitrary constant. Solving the Killing vector equations cor-
responding to Y�ð1=2Þ and M0 leads to a metric which is �,
r-independent. Furthermore, solving the Y1=2 Killing equa-

tions brings the metric to a form which coincides with the
initial ansatz of Ref. [4]: ds2 ¼ gttðt; zÞdt2 þ grrðt; zÞdr2 þ
gzzðt; zÞdz2 � 2igrrðt; zÞdtd�þ 2gtzðt; zÞdtdz. The other
components of the metric are determined by the remaining

Killing equations: gzz ¼ C2ð@zgrrÞ2
g2rr

and

gtz ¼ grr@zS

2t
þ C2@zgrr@tðt2grrÞ

t2g2rr
þ C1@zgrr;

gtt ¼ C3g
2
rr þ C2½@tðt2grrÞ�2

t4g2rr
þ 2C1@tðt2grrÞ

t2

þ grrð2tT � Sþ t@tSÞ
t2

; (17)

where C2, C3 are additional integration constants. We stress
that this metric is the most general solution of the reverse-
engineering procedure, given the confines of the initial as-
sumption that Y1=2 becomes a bulk Killing vector while

remaining unchanged. However, we cannot claim that we
have identified the holographic dual of a general theory
possessing the full symmetry of the age algebra. The reason
for this is that we are able to identify one more Killing vector
of the metric compatible with the following bulk extension
of X�1
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�X�1 ¼ @t � @tgrr
@zgrr

@z þ i

�
� 2C2

t2grr
þ S

2t2

� @tSþ 2T þ 4C1

2t
þ @tgrr@zS

2t@zgrr

�
@�: (18)

Thus, the isometries of the above metric generate the full
Schrödinger algebra, as in Ref. [4]. Naturally, the correlators
computed from thismetric using holography exhibit the kind
of ‘‘fake’’ aging discussed earlier, and are constrained by the
full Schrödinger algebra. For the time being, we can only
trace this feature to the assumption made regarding the bulk
realization of Y1=2. (This assumption was also made in

Ref. [4].) This condition was imposed at a purely technical
level, such that theKillingvector equations became tractable.
A logical course of action is to remove this restriction.
However, in this case, we have not been able to solve the
Killing vector equations and identify a metric. Perhaps a
reasonable line of attack would be to try to solve them in a
perturbative expansion in the bulk coordinate (a sort of
Fefferman—Graham expansion) starting from the boundary.
We leave this question for our future work.

In conclusion, in this Letter, we have clearly pointed out
the difference between the aging dynamics realized as
dressed Schrödinger dynamics from pure aging. In particu-
lar, we have obtained the three-point functions for aging
which cannot be obtained by dressing the three-point
Schrödinger correlators. Regarding the unconstrained
function appearing in Eq. (9), which is similar to the
unconstrained function present in scalar four-point corre-
lators of the conformal algebra and which depend on the
specific conformal field theory under consideration, it
would be useful to determine this function in a particular
case of aging dynamics. Perhaps it could be used to reverse
engineer the particular holographic metric as in Ref. [5].

The physical implications of our new results are yet to be
understood. Nevertheless, it is reasonable to expect that
these results will have practical importance in the real and
numerical experiments of aging dynamics [1] and that they
should be generalizable to the relativistic context, with
possible applications to the physics of the quark-gluon
plasma. We plan to address these issues in our future work.
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92ER40677, and D.V., and C.W. under Grant
No. DEFG02- 97ER41027.

[1] M. Henkel and M. Pleimling, Ageing and Dynamical
Scaling Far from Equilibrium, Nonequilibrium phase
transitions Vol. 2 (Springer, New York, 2010).

[2] M. Henkel, Nucl. Phys. B641, 405 (2002); M. Henkel and
S. Stoimenov, Nucl. Phys. B847, 612 (2011).

[3] D. Minic and M. Pleimling, Phys. Rev. E 78, 061108
(2008).

[4] J. I. Jottar, R.G. Leigh, D. Minic, and L.A. P. Zayas,
J. High Energy Phys. 11 (2010) 034.

[5] E. Barnes, D. Vaman, C. Wu, and P. Arnold, Phys. Rev. D
82, 025019 (2010).

[6] E. Barnes, D. Vaman, and C. Wu, Phys. Rev. D 82, 125042
(2010).

[7] M. Henkel and J. Unterberger, Nucl. Phys. B660, 407
(2003).

[8] From ½X�1; Vþ� ¼ �2iV�, it is clear that the Schrodinger
algebra does not admit an extension which includes Vþ
without adding all the other generators of the conformal
algebra.

PRL 109, 131601 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

28 SEPTEMBER 2012

131601-5

http://dx.doi.org/10.1016/S0550-3213(02)00540-0
http://dx.doi.org/10.1016/j.nuclphysb.2011.02.008
http://dx.doi.org/10.1103/PhysRevE.78.061108
http://dx.doi.org/10.1103/PhysRevE.78.061108
http://dx.doi.org/10.1007/JHEP11(2010)034
http://dx.doi.org/10.1103/PhysRevD.82.025019
http://dx.doi.org/10.1103/PhysRevD.82.025019
http://dx.doi.org/10.1103/PhysRevD.82.125042
http://dx.doi.org/10.1103/PhysRevD.82.125042
http://dx.doi.org/10.1016/S0550-3213(03)00252-9
http://dx.doi.org/10.1016/S0550-3213(03)00252-9

