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The effect of a localized drive on the steady state of an interface separating two phases in coexistence is

studied. This is done using a spin-conserving kinetic Ising model on a two-dimensional lattice with

cylindrical boundary conditions, where a drive is applied along a single ring on which the interface

separating the two phases is centered. The drive is found to induce an interface spontaneous symmetry

breaking whereby the magnetization of the driven ring becomes nonzero. The width of the interface

becomes finite and its fluctuations around the driven ring are nonsymmetric. The dynamical origin of these

properties is analyzed in an adiabatic limit, which allows the evaluation of the large deviation function of

the magnetization of the driven ring.
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The effect of local drive on the properties of an interface
separating two coexisting phases has recently been ex-
plored as a simple example of systems driven away from
equilibrium. Much of the attention is due to the surprising
experimental results on a colloidal gas-liquid interface
subjected to a shear flow parallel to the interface [1]. It
was found that the shear drive applied away from the
interface strongly suppresses the fluctuations of the inter-
face, making it smoother. This long-distance effect of the
drive is due to long-range correlations that characterize
driven systems [2–8]. An interesting theoretical approach
for studying this phenomenon has been introduced by
Smith et al. [9], who considered a two-dimensional version
of the system, and modeled it by an Ising lattice gas below
its transition temperature. Using spin-conserving Kawasaki
dynamics and applying shear flow at the boundaries paral-
lel to the interface, it was observed that the interface indeed
becomes narrower, although its width still increases with
the length of the interface. In closely related studies, the
effect induced by a current-carrying line on a neighboring
nondriven one has also been analyzed [10–13].

In this Letter, we consider a drive localized along an
interface that separates two coexisting phases, and study
the resulting interface properties. This is done using a 2D
Ising model on a square lattice with cylindrical boundary
conditions (Fig. 1) that evolves under spin-conserving
dynamics. The drive acts along the ring around which the
interface is centered. We find that the drive induces an
interface phase transition, which involves spontaneous
symmetry breaking, resulting in a nonzero magnetization
of the driven ring. In this transition, the macroscopic 2D
steady state remains unchanged; however, spontaneous
symmetry breaking takes place, involving the steady state
of a 1D stripe centered on the driven ring. This is in sharp
contrast with the equilibrium setup of an interface sub-
jected to a localizing potential along a ring, where the ring
magnetization vanishes at all temperatures and no interface
spontaneous symmetry breaking takes place. Moreover, we

find that the drive suppresses the fluctuations of the inter-
face, leading to an interface with a finite width that does not
scale with the system size. Also, due to the broken sym-
metry on the driven ring, the interface fluctuations are
highly asymmetric. The interface fluctuates more strongly
into the bulk phase whose magnetization is opposite to that
of the driven ring. These results are first demonstrated
using numerical simulations. The model is then analyzed
in a special limit, which allows an analytical computation
of the large deviation function (LDF) [14] of magnetization
of the driven ring, demonstrating the existence of sponta-
neous symmetry breaking.
To proceed, we consider Ising spins � � f�rg on sites

r � ðx; yÞ of an L� ð2Mþ 1Þ square lattice, with periodic
boundary condition in the x-direction, while the two open
boundaries y ¼ �M are coupled to rows from above
(y ¼ Mþ 1) and below (y ¼ �M� 1), respectively,
with fixed spins �x;�M�1 ¼ �1 (Fig. 1). The model has

nearest-neighbor ferromagnetic interactions, and a drive is
introduced by a force field E � ðE; 0Þ, applied on the
y ¼ 0 ring. The field favors the positive spins to move
counterclockwise along the ring, and as a result drives the
system out of equilibrium.
We consider a modified Metropolis algorithm [3] where,

in every step, a pair of nearest-neighbor sites r and r0 are

FIG. 1 (color online). Square lattice with cylindrical boundary
condition, with the drive on the central ring and the boundary
conditions indicated.
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chosen at random, and their spins are exchanged with
probability minf1; expð���H Þg, where � is an inverse
temperature and �H is the energy difference between the
final and initial configurations. Thus, for exchanging �r

and �r0 ,

�H ¼
�
�H� ð�r ��r0 Þðr0 � rÞ �E if r;r0 2 0th ring;

�H elsewhere;

where �H is calculated using the Ising Hamiltonian
H ¼ �J

P
hr;r0i�r�r0 , with J > 0. One Monte Carlo time

step is constituted of Lð4Mþ 1Þ such updates. In all the
numerical results presented in this Letter, we use a large
driving field E � 10J.

In the absence of a driving field, the model is in
equilibrium. At subcritical temperatures (T < Tc ’
2:2692J=kB), the equilibrium state is composed of two
oppositely magnetized phases, separated by an interface.
For an initial configuration with zero overall magnetiza-
tion, the magnetization profile in the y direction, my �
1=L

P
x�x;y, is antisymmetric with respect to y ¼ 0. The

interface fluctuates symmetrically around the driven ring,
leading to zero magnetization on the ring, m0 ¼ 0. In the
large L, M limit with fixed aspect ratio L=M, the width of

the interface scales as
ffiffiffiffi
L

p
[15].

Introducing a drive does not modify the overall macro-
scopic structure of the steady state. As is naively expected,
the steady state is still composed of two oppositely mag-
netized phases separated by a fluctuating interface around
y ¼ 0. However, numerical studies of the model reveal
some profound changes in the structure of the interface
itself. In particular we find the following: (a) In the ther-
modynamic limit, the magnetization of the driven line,m0,
is nonzero, taking one of two oppositely directed values. It
thus breaks the �r ! ���r symmetry of the model.
(b) The interface is localized around the driven line, and
its width stays finite in the thermodynamic limit, and
(c) the fluctuations of the interface into the two bulk phases
are highly asymmetric.

In a typical microscopic configuration of the model, the
driven line is predominantly occupied by either positive or
negative spins representing its two possible ordered states.
As the system evolves, the magnetization m0 fluctuates
around one of the nonzero values for a long time. It then
switches to the oppositely magnetized state over a much
shorter time scale, as shown in the inset of Fig. 2. The time
the system spends in each of the two states is the same
when averaged over a large number of switches.

The numerical result for the average time between two
such successive switches, ts, is shown in Fig. 2. The
data suggest that ts grows exponentially with L, with
ts � expð0:06LÞ. The data for each L are averaged over n
number of switches that are observed in available compu-
tation time (n varies from around 12, 000 to 10 as L
changes from 30 to 130); n decreases with L, yielding
increasing error bars of order 1=

ffiffiffi
n

p
with L. Although the

range of the system size studied is insufficient for conclu-
sive evidence of exponential growth, this form is justified
by the theoretical results presented below. The exponential
growth implies that in the thermodynamic limit, the two
nonzero values of m0 correspond to two thermodynami-
cally stable phases.
The width of the interface is evaluated by averaging jyj

weighted by the derivative �dmy=dy that peaks at the

interface position. The result is shown in the inset of
Fig. 3 for both the driven and nondriven cases. A compari-
son of the two cases clearly indicates that the interface
fluctuations are drastically reduced in the presence of
drive. As will be shown by the theoretical analysis pre-
sented below, the width of the interface remains finite at
large L. Such a smoothening of the interface has also been
observed in the presence of global drive parallel to the
interface [16]. An interesting difference here is that the
interfacial fluctuations are asymmetric, resulting in an
asymmetric magnetization profile around the driven line
(see Fig. 3).
In order to make an analytical analysis of the model

feasible, we generalize the model by introducing a

FIG. 2 (color online). The average time between consecutive
switches tsðLÞ in m0 for 2M ¼ L and T ¼ 0:6Tc. A typical time
evolution of m0 for L ¼ 2M ¼ 100 is shown in the inset, where
time is measured in Monte Carlo steps.

FIG. 3 (color online). The average magnetization profile my

corresponding to the two phases, close to y ¼ 0. The asymmetry
around y ¼ 0 is clearly seen. The profiles are generated on a
100� 101 lattice at T ¼ 0:85Tc, averaging over 105 configura-
tions at regular intervals of 1000 Monte Carlo steps. The figure
in the inset shows the growth of the width of the interface with
increasing length L for zero drive (top curve) and for driving
strength E ¼ 10J (lower curve).
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parameter � that controls the dynamical rate of the pro-
cesses involving spin exchange between the y ¼ 0 ring and
the neighboring rings y ¼ �1. For these processes, the rate
becomes minf�; � expð���H Þg, with � > 0. The other
rates remain unchanged. This does not modify the steady
state of the equilibrium case (E ¼ 0), but it helps analyzing
the nonequilibrium steady state. We now consider the
steady state in the following special limit: (a) slow ex-
change rates (� 	 L�3) between the driven and the neigh-
boring rings, (b) an infinite driving field (E ! 1), and
(c) low temperature ( expð��JÞ 	 1). We show below
that in this limit the stationary probability distribution
Pðm0Þ of the magnetization m0 of the driven line has the
form Pðm0Þ / expð� L�ðm0ÞÞ. The LDF �ðm0Þ is then
computed and shown to possess two degenerate minima at
nonvanishing values of the magnetization m0 ¼ �m?

0 (see

Fig. 4), implying a spontaneous symmetry breaking on
the ring.

We proceed by noting that due to the slow exchange rate
�, there are no significant exchanges between the driven
line and its neighboring rings on a time scale t 	 �t ¼
ð�LÞ�1. On such a time scale, the lattice may be considered
as composed of three subsystems: the driven line, and the
upper u (y > 0) and lower ‘ (y < 0) sublattices. They
evolve while keeping their own specific magnetization
m0, mu, and m‘ unchanged, reaching the steady state
corresponding to fixed subsystem magnetization. On a
longer time scale, t * �t, the magnetizations m0, mu,
and m‘ evolve as spins are exchanged between the
subsystems.

We now define a coarse-grained time variable � ¼ t=�t
such that the subsystem magnetization evolves with in-
creasing �; however, at any given � each subsystem is
effectively in the steady state corresponding to its magne-
tization. This separation of slow and fast processes is
analogous to the adiabatic approximation in quantum me-
chanics [17], and has also been applied in related models
[18,19].

Let us characterize the steady states corresponding to
fixed subsystem magnetization m0, mu and m‘. First, con-
sider the driven ring. In the limit E ! 1, the dynamics
within this ring is independent of the two other subsystems

and reduces to that of the totally asymmetric simple
exclusion process (TASEP). In its steady state, all spin
configurations with fixed magnetization m0 are equally
probable, leading to uniform magnetization and zero
spin-spin correlation along the driven line. This steady

state is reached in a time of OðL3=2Þ which, for �	L�3,
is smaller than the typical time of exchange processes
between the driven ring and its neighboring ones [20].
Then, the driven ring provides an effective boundary
magnetic field Jm0 on the u and ‘ subsystems. Thus, the
steady state of these two subsystems is the equilibrium
state of the Ising model subjected to a boundary field. The
boundary field results in a magnetization profile my which,

for large jyj, approaches the bulk magnetization values
�mB and mB for the u and ‘ subsystems, respectively.
The length scale of this approach is of the order of the spin-
spin correlation length �ðTÞ of the 2D Ising model. Since
this length is finite at all temperatures except at Tc, it
demonstrates that the width of the interface remains finite
for large L.
Let P�ðm0Þd� be the probability of the driven line

magnetization to have the value m0 between coarse-
grained time � and �þ d�, while mu and m‘ have already
reached stationary values. The probability function evolves
as the spins are exchanged between the subsystems. At
each exchange process between the driven ring and the
bulk, m0 changes by �2=L. Let pðm0Þ and qðm0Þ be the
increasing and decreasing rates of m0, respectively. Then,
the dynamics of m0 is that of a random walker with
position-dependent forward and backward jump rates
pðm0Þ and qðm0Þ, respectively, and with boundary condi-
tion P�ðm0Þ ¼ 0 for jm0j> 1.
The stationary distribution of this motion is an equilib-

rium distribution function,

Pðm0Þ ¼ Pð0Þ exp½�L�ðm0Þ
: (1)

The LDF �ðm0Þ is an even function of m0, and it can
be determined using the detailed balance condition
pðm0ÞPðm0Þ ¼ qðm0 þ 2=LÞPðm0 þ 2=LÞ, which for
0<m0 � 1 yields

P

�
m0 ¼ 2n

L

�
¼ Pð0ÞYn

k¼1

p½2L ðk� 1Þ

q½2L k


; (2)

with n ¼ 1; . . . ; L=2. In the large L limit, this yields the
LDF for m � 0,

�ðm0Þ ¼ 1

2

Z m0

0
dm ln

�
pðmÞ
qðmÞ

�
; (3)

with �ð�m0Þ ¼ �ðm0Þ.
The rates pðm0Þ and qðm0Þ are determined as follows:

Consider a spin exchange process between the driven
ring and its two neighboring ones, in which the
microscopic configuration changes from � to �0 and m0

increases by 2=L. The rate of this process is
FIG. 4 (color online). The LDF �ðm0Þ calculated using
Eq. (3) and (6).
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!ð� ! �0ÞPð�jm0;�mB;mBÞ, where !ð� ! �0Þ ¼
minf1; expð���HÞg is the Metropolis success rate in
coarse grain time variable � and Pð�jm0;�mB;mBÞ is
the steady-state probability of configuration � corre-
sponding to subsystem magnetization m0, mu ¼ �mB

and m‘ ¼ mB. Summing over all such exchanges, one
obtains

pðm0Þ ¼
X
�;�0

!ð� ! �0ÞPð�jm0;�mB;mBÞ; (4)

where the sum is over configurations�0 whosem0 is higher
than that of � by 2=L. The magnetization decreasing rate
qðm0Þ can be readily obtained by noting that because of
the invariance of the dynamics to space-time inversion
�r ! ���r, one has qðm0Þ ¼ pð�m0Þ.

In the slow exchange limit � 	 L�3, the probability
Pð�jm0;�mB;mBÞ can be expressed in terms of the proba-
bility of the subsystem configurations as

Pð�jm0;�mB;mBÞ ’ Pð�0jm0ÞPð�uj �mB;m0Þ
� Pð�‘jmB;m0Þ; (5)

where �0, �u, and �‘ are the microscopic spin configura-
tions of the three subsystems corresponding to the configu-
ration �. Here, Pð�0jm0Þ is the steady-state distribution
of the driven line with fixed magnetization m0, which
is the same as the steady state of a totally asymmetric
simple exclusion process, and Pð�uj �mB;m0Þ and
Pð�‘jmB;m0Þ are the equilibrium distributions of the other
two subsystems.

In general, calculating all the terms in Eq. (4) is not
straightforward. However, the calculation becomes fea-
sible in the low temperature limit where these rates may
be expanded in powers of expð��JÞ. In order to keep track
of the terms in this expansion, it is convenient to generalize
the model by considering an interaction strength between
the driven ring and its neighboring ones as J1 � J. It is
easy to see that the leading contribution to pðm0Þ in Eq. (4)
results from the exchange process shown in Fig. 5, where
both the subsystems u and ‘ are in their respective ground
state, m‘ ¼ �mu ¼ 1. For this process, !ð� ! �0Þ ¼
exp½�2�ðJ þ J1Þ
 and Pð�jm0;�mB;mBÞ¼ ½ð1þm0Þ2�
ð1�m0Þ=8
½1�Oðe�6�JÞ
. Higher-order contributions
can be determined similarly from other exchange events.
Computing pðm0Þ up to Oðexpð�6�JÞÞ yields, for
�1 � m0 � 1,

pðm0Þ ¼ 1

8
½ð1þm0Þ2ð1�m0Þe�2�J1
e�2�J

þ 1

8
½ð1þm0Þ2ð1�m0Þð2e�2�J1m0 þ e2�J1m0Þ

þ 2ð1þm0Þð1�m0Þ2ðe�2�J1 þ e2�J1m0Þ
þ ð1�m0Þ3e2J1m0
e�6�J þOðe�8�JÞ: (6)

The LDF �ðm0Þ calculated using the rate in Eq. (6) is
plotted in Fig. 4 for �J1 ¼ �J ¼ 3=4 (T ’ 0:6Tc). This

function has two minima, which correspond to the two
thermodynamic phases with nonzero m0. We expect the
bimodality of the LDF to disappear below a critical non-
vanishing value of E, which cannot be determined analyti-
cally with the current theoretical approach.
In terms of Monte Carlo steps, the average magnetiza-

tion switching time is given by ts � ��1 expð�LÞ, where �
is the height barrier of the LDF. For the parameters of
Fig. 4, one has � ¼ 0:18, which is of the same order as that
obtained numerically in Fig. 2. For a better comparison,
higher-order terms in the low-temperature expansion are
required.
The analysis presented in this Letter demonstrates that a

local drive can induce a phase transition that involves
spontaneous symmetry breaking of an interface separating
two coexisting phases. In a forthcoming publication, we
report studies of the model with periodic boundary con-
ditions in both the x and y directions. In this case, the
model exhibits two interfaces, and our studies have shown
that either one of them is attracted by the driven ring,
resulting in a macroscopic symmetry breaking, in addition
to that of the interface [21]. This demonstrates that drive
can attract and localize a fluctuating interface.
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