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The first experimental demonstration of an adaptive quantum state estimation (AQSE) is reported. The

strong consistency and asymptotic efficiency of AQSE have been mathematically proven [A. Fujiwara,

J. Phys. A 39, 12489 (2006)]. In this Letter, the angle of linear polarization of single photons, the phase

parameter between the right and the left circularly polarization, is estimated using AQSE, and the strong

consistency and asymptotic efficiency are experimentally verified. AQSE will provide a general useful

method in both quantum information processing and metrology.
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Quantum theory is inherently statistical. This entails
repetition of experiments over a number of identically
prepared quantum objects, for example, quantum states,
if one wants to know the true state or the true value of the
parameter that specifies the quantum state [1–4]. Such an
estimation procedure is particularly important for quantum
communication and quantum computation [5] and is, also,
indispensable to quantum metrology [6–10]. In applica-
tions, one needs to design the estimation procedure in such
a way that the estimated value of the parameter should be
close to the true value (consistency), and that the uncer-
tainty of the estimated value should be as small as possible
(efficiency) for a given limited number of samples. In order
to realize these requirements, Nagaoka advocated an adap-
tive quantum state estimation (AQSE) procedure [11,12],
and recently, Fujiwara proved the strong consistency and
asymptotic efficiency for AQSE [13,14].

In this Letter, we report the first experimental demon-
stration of AQSE using photons. The angle of a half wave
plate (HWP) that initializes the linear polarization of input
photons is estimated using AQSE. A sequence of AQSE is
carried out with 300 input photons and the sequence is
repeated 500 times for four different settings of HWP. The
statistical analysis of these results verifies the strong con-
sistency and asymptotic efficiency of AQSE. Recently, it
has been mathematically proven that the precision of
AQSE outperforms the conventional state tomography
[15]. It is thus expected that AQSE will provide a useful
methodology in the broad area of quantum information
processing, communication, and metrology.

Let us first explain AQSE, in detail. For simplicity, we
restrict ourselves to a one-dimensional quantum statistical
model S ¼ f��; � 2 �ð� RÞg, a smooth parametric family
of density operators on a Hilbert space H having a one-
dimensional parameter �. Our aim is to estimate the true
value of � by means of a certain quantum estimation

scheme. An estimator is represented by a pair (M, ��), where
M ¼ fMðxÞ; x 2 Xg is a positive operator-valued measure

(POVM) that takes values on a set X, and ��:X ! � is a

map that gives the estimated value ��ðxÞ from each observed
data x 2 X. The observed data x 2 X have a probability
density

fðx; �;MÞ :¼ Tr��MðxÞ; (1)

which depends on both the parameter � and the measure-
mentM.
In traditional statistics, it is often the case to confine our

attention to unbiased estimators. An estimator (M, ��) is
called unbiased if

E�½M; ��� ¼ � (2)

is satisfied for all � 2 �, where E�½�� denotes the expec-
tation with respect to the density, Eq. (1). It is well-known

[16] that an unbiased estimator (M, ��) satisfies the quan-

tum Cramér–Rao inequality V�½M; ��� � ðJ�Þ�1, where
V�½�� denotes the variance, and J� is the quantum Fisher
information of the model S defined by J� :¼ Tr��L

2
�,

where L� is the symmetric logarithmic derivative defined

by the self-adjoint operator satisfying the equation d��

d� ¼
1
2 ðL��� þ ��L�Þ.
In quantum statistics, however, it is regarded that un-

biasedness is too restrictive a requirement, and we usually

weaken the condition to a local one. An estimator (M, ��) is
called locally unbiased [17] at a given point �0 2 � if the
condition [Eq. (2)] is satisfied around � ¼ �0 up to the first

order of the Taylor expansion, that is, if E�0½M; ��� ¼ �0
and d

d� E�½M; ���j�¼�0 ¼ 1 hold. Clearly, an estimator is

unbiased if and only if it is locally unbiased at all

� 2 �. A crucial observation is that an estimator (M, ��)
that is locally unbiased at �0, also satisfies the quantum
Cramér–Rao inequality
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V�0½M; ��� � ðJ�0Þ�1 (3)

at � ¼ �0, and that the lower bound in Eq. (3) is achievable
for any one-dimensional quantum statistical model S. To
put it differently, the best locally unbiased estimator (LUE)
for the parameter � at � ¼ �0 is the one that satisfies

V�0½M; ��� ¼ ðJ�0Þ�1.

Here, we encounter a difficulty which often becomes the
target of criticism: since the best LUE for estimating the
parameter � depends, in general, on the unknown parame-
ter � itself, the estimation strategy based on LUEs would
be infeasible. In a different yet analogous context, Cochran
[18] ingeniously described this kind of dilemma as follows:
‘‘You tell me the value of � and I promise to design the best
experiment for estimating �.’’

To surmount this difficulty, Nagaoka [11,12] advocated
an AQSE scheme as follows. Suppose that, by prior inves-
tigation of the quantum statistical model S, one has the list
of optimal LUEs ðMð�; �Þ; ��ð�;�ÞÞ for each � 2 �. One

begins with an arbitrary initial guess �̂0 2 �, and applies

the measurement Mð�; �̂0Þ that is optimal at �̂0. Suppose
the data x1 are observed, one then applies the maxi-

mum likelihood method to the likelihood function L1ð�Þ ¼
fðx1; �;Mð�; �̂0ÞÞ, to obtain the next guess �̂1. At stage

nð� 2Þ, one applies the measurement Mð�; �̂n�1Þ, where
�̂n�1 is the maximum likelihood estimator (MLE) obtained
at the previous stage. The likelihood function is then given

by Lnð�Þ :¼
Q

n
i¼1 fðxi; �;Mð�; �̂i�1ÞÞ, where xi is the ob-

served data at stage i, and one obtains the nth MLE �̂n that
maximizes Lnð�Þ. It is quite natural to expect that the

sequence �̂n of MLEs would converge to the true value
of the parameter �. In fact, under certain regularity con-

ditions, it can be shown that the sequence �̂n is strongly
consistent and asymptotically efficient [13,14].

Now, let us discuss the implementation of AQSE using
photons (Fig. 1). Here, the unknown parameter is the angle
� of HWP0, which determines the phase � between right
and left circularly polarizations of input photons by the
relation � ¼ 4�. An arbitrary linear polarization can be
described using right and left circular polarizations as
follows:

jc i¼ 1ffiffiffi
2

p ðjRiþei�jLiÞ¼ cos

�
�

2

�
jHiþsin

�
�

2

�
jVi: (4)

By changing the angle of the half wave plate (HWP1), we
can adjust the measurement basis. For such measurements,
the POVM having optimal estimation capability is given by

Mð�Þ¼ ðMð1;�Þ; Mð2;�ÞÞ¼ðj�ih�j; I�j�ih�jÞ; (5)

where h�j ¼ ðcosð2�þ �
4Þ; sinð2�þ �

4ÞÞ. By applying the

POVM Mð�Þ to the input state jc ð�Þi :¼ jc i, one obtains
the probability distribution on X :¼ f1; 2g, which is iso-
morphic to the fair coin flipping.

The drawback to realizing this measurement is that the
optimal POVMMð�Þ depends on the unknown value of the
parameter � [19]. We can avoid this drawback by adopting
an AQSE as follows. We begin by setting the initial log-
likelihood function to be l0ð�Þ ¼ 0, and then start inputting
and detecting photons one by one. For nth photon, we

apply the measurement Mð�̂n�1Þ which depends on the

latest MLE �̂n�1. Let xn 2 X be the outcome indicating
which detector has been lit. The log-likelihood function is
then updated by the formula

lnð�Þ :¼ ln�1ð�Þ þ loghc ð�ÞjMðxn; �̂n�1Þjc ð�Þi; (6)

and the nth MLE is given by �̂n ¼ argmax�lnð�Þ. Let us
denote the true value of the parameter � by �t. It is known

that the sequence �̂n of MLEs converges to the true value �t

with probability one (strong consistency) and that the

distributions of the random variables
ffiffiffi
n

p ð�̂n � �tÞ con-
verge to the normal distribution Nð0; J�1

�t Þ (asymptotic

efficiency), where J� denotes the quantum Fisher informa-
tion of the parameter � [13,14], which turns out to be 16 for
our model [Eq. (4)].
The experimental setup is shown in Fig. 2(a). Single

photons at 780 nm are generated from a heralded single
photon source [20], consisting of a CW diode pump laser
(wavelength: 402 nm) and a 3 mm long BBO crystal
(Type I). A pair of a signal photon (780 nm) and a trigger
photon (830 nm) is created via spontaneous parametric
down-conversion. The detector (DT, SPCM-AQR, Perkin
Elmer) after an interference filter (IF1, center wavelength
830 nm) outputs an electric pulse (width 30 ns) when it
detects a trigger photon and the electric pulse heralds the
generation of a signal photon, which is coupled to a polar-
ization maintaining fiber (PMF) after an interference
filter (IF2, center wavelength 780 nm, width 4 nm). The

FIG. 1 (color online). Schematic of adaptive quantum state
estimation. Photons are linearly polarized with a polarization
direction determined by HWP0. The polarization is analyzed by
HWP1 and the polarizing beam splitter (PBS). The controller
sets HWP1 to an angle calculated on the basis of the photon
measurement results.
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polarization of photons are then initialized to be horizontal
using a polarizer (extinction ratio 10�5). The target parame-
ter �t was set using HWP0. The polarization state of the
photon was analyzed by HWP1 and a polarizing beam
splitter (PBS). After passing through the PBS, photons are
guided to single photon detectors (D0 andD1, SPCM-AQR,
Perkin Elmer) on each PBS output port. The outputs of
single photon detectors are gated by the rise of the heralding
signal and connected to the first-come discriminator, con-
sisting of a homemade electric circuit. When the discrim-
inator receives the first signal from one of the detectors (D0
or D1) after the measurement for (n� 1)th photon starts,
the discriminator informs which detector has been clicked.
The minimum pulse interval of 2.5 ns can be discriminated.
Note that the discriminator ignores the casewhen it receives
the pulses from both the detectors within 2.5 ns. The angle
of HWP1 for measuring the nth photon is determined by

calculating the discretized MLE �̂n, the maximizer of the
log-likelihood function, Eq. (6), chosen from among the
10 000 points that divide the domain [0, �=2) of the pa-
rameter � into equal parts [Figs. 2(b) and 2(c)]. When the
change of HWP1 angle is completed, the measurement for
the next (nth) photon will be started. In a sequence of
AQSE, the above mentioned procedure is carried out up to
300 input photons (n ¼ 300). For four different HWP0
angles � ¼ 0, 30, 60, and 78.3 deg, we repeated the se-
quence for 500 times (r ¼ 500).

Let us first observe the strong consistency for the

sequence �̂n of MLEs for the parameter � of HWP0.

Figure 3(a) shows 500 trajectories of estimated HWP0

angle �̂n against the number n of photons when the true
value �t of the parameter is set to be 60 degrees. The curves
correspond to independent runs of adaptive estimation.

Evidently, each curve of �̂n approaches the true value
�t, which is in accord with the mathematical result that

�̂n ! �t almost surely as n ! 1, even though the curves
are dissimilar to each other, reflecting the genuine statisti-
cal nature of quantum system. The convergence to the true
value is clear in Fig. 3(b) where first 10 trajectories in
Fig. 3(a) are superposed.

We next test the hypothesis that the MLE �̂n follows
a normal distribution for large n. More concretely, we

will investigate if the random variable
ffiffiffiffiffiffiffiffi
nJ�

p ð�̂n � ��Þ fol-
lows the standard normal distribution Nð0; 1Þ, i.e.,ffiffiffiffiffiffiffiffi
nJ�

p ð�̂n � ��Þ � Nð0; 1Þ, where �� is the sample average

of MLEs �̂n over sufficiently many independent trials. A
goodness of fit test [21] was carried out as follows: (1) The
real axis was divided into 23 intervals (bins) fIbg22b¼0, where

I1; . . . ; I21 are disjoint partitions of the interval [� 3:5, 3.5]
of equal width, and I0 ¼ ð�1;�3:5Þ, I22 ¼ ð3:5;þ1Þ. In
reality, these bins were slightly shifted by �=10 000, where
� :¼ ffiffiffiffiffiffiffiffi

nJ�
p

�=20 000 is the scaled resolution of the estima-

tor �̂n, so that the data
ffiffiffiffiffiffiffiffi
nJ�

p ð�̂n � ��Þ did not fall on the

boundaries of the bins. (2) The test-statistic X2 :¼
P

22
b¼0

ðNb�rpbÞ2
rpb

was calculated, where Nb is the number of

observed data which fell into bth bin, pb the theoretical
probability of falling a datum into bth bin under the null
hypothesis Nð0; 1Þ, and r the number of repetitions of
adaptive estimation procedure. (3) The test-statistic X2

FIG. 3 (color online). (a) Trajectories of estimated HWP0
angles against the number n of photons for r ¼ 500 repetitions
is shown in a three-dimensional plot. (b) The first 10 curves are
superposed in a two-dimensional graph.

FIG. 2 (color online). (a) Schematic of the experimental setup.
(b)(c) An example showing the update of a log-likelihood
function. The second term loghc ð�ÞjMðxn; �̂n�1Þjc ð�Þi in
Eq. (6) is shown in panel (b), and the updated lnð�Þ is shown
in panel (c). The (blue) arrows in (b) and (c) indicate the true
value �t.
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was analyzed using the chi-square distribution �2
23-p of

degree 23-p, where p ¼ 2 degrees of freedom ought to
be subtracted because of the normalization and the use of
sample average ��.

Figure 4 shows the histogram of the observed data
obtained by r ¼ 500 independent experiments of adaptive
estimation scheme, each using n ¼ 300 photons. The true
values �t of the parameter � of HWP0 are set to be 0, 30,
60, and 78.3 degrees. The density function of the standard
normal distribution Nð0; 1Þ is also plotted as the solid
curve. All the experimental data agree with the standard
normal distribution. To be precise, the values of the test
statistic X2 are (a) 16.8 (b) 15.7 (c) 12.8 (d) 16.2, and the
null hypothesis is accepted with 10% significance level in
each case.

Having obtained the strong evidence that the distribution
of the MLE has converged quite well to a normal distribu-
tion at n ¼ 300, we finally proceed to the estimation of
confidence intervals [21] for the mean � and variance v,

assuming that
ffiffiffi
n

p ð�̂n ��Þ � Nð0; vÞ. The confidence in-
tervals for � and v are obtained by the standard procedure

based on the statistical laws that
ffiffiffi
r
V

q
ð ����Þ � Tr�1 and

r�1
ðv=nÞ �V � �2

r�1: Here
�V is the unbiased variance of MLEs

�̂n over r trials, and Tr�1 the t-distribution of degree r� 1.
Table I summarizes the results for r ¼ 500 with 90%

confidence level. Recall that the asymptotic efficiency
asserts that � ’ �t and v ’ J�1

�t ð¼ 0:0625Þ. Since the pre-
cision of the present experiment is about �0:2 degrees
[22], we conclude that the estimated values of � and v
listed in Table I are in excellent agreement with the theo-
retical values.

It should be noted that the purpose of our AQSE is
completely different from ‘‘adaptive measurements’’ pro-
posed by Berry and Wiseman [23]. Their scheme was
devised to estimate the phase difference between the two

arms of an interferometer using a special N-photon two-
mode state, approximating the canonical measurement
proposed by Sanders and Milburn [24], and is not appli-
cable to general quantum state estimation problems. By
contrast, our AQSE is a general purpose estimation scheme
applicable to any quantum statistical model using n iden-
tical copies of an unknown state. AQSE may also be used
in verifying the achievability of the Cramér–Rao version of
the Heisenberg limitOð1=N2Þ [25] by applying the scheme
to the n-i.i.d. extension ��n

� of an N-photon phase-shift

model �� onH ’ ðC2Þ�N . (See also Ref. [26] for estimat-
ing a unitary channel under noise.) Incidentally, AQSE is
based on the Cramér–Rao type point estimation theory and
is free from the choice of a priori distribution which
matters in Bayesian statistics such as adaptive Bayesian
quantum tomography [27].
In summary, we have verified both the strong consis-

tency and asymptotic efficiency of AQSE by experimen-
tally estimating the angle of linear polarization of photons.
Since AQSE has been mathematically proven to outper-
form the conventional estimation scheme such as the state
tomography [15], we plan to apply AQSE to multi-
parameter cases and compare the performance with other
protocols using a fixed measurement basis [28]. It will also
be intriguing to apply AQSE to enhance the performance of
quantum metrological experiments beating the standard
quantum limit [6–9].
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