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We realize and study an attractively interacting two-dimensional Fermi liquid. Using momentum-

resolved photoemission spectroscopy, we measure the self-energy, determine the contact parameter of the

short-range interaction potential, and find their dependence on the interaction strength. We successfully

compare the measurements to a theoretical analysis, properly taking into account the finite temperature,

harmonic trap, and the averaging over several two-dimensional gases with different peak densities.
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Atomic quantum gases have been proposed as quantum
simulators to identify the microscopic origin of condensed
matter phenomena, which have been pondered for decades.
One such phenomenon is the Fermi liquid [1], which has
been the cornerstone of the description of solids for the last
50 years. The underlying concept of this remarkable theory
is that, although the basic quantum particles can be
strongly interacting, there are some excitations—named
Landau quasiparticles—that are essentially noninteracting.
These excitations have the same quantum numbers (charge
and spin) as the original particles, but their dynamical
properties can be significantly different. Quasiparticle dy-
namics is described by a fundamental function called the
self-energy, whose real and imaginary parts encode infor-
mation about the quasiparticle dispersion and decay, re-
spectively. In general, this function has a rich structure
representing a variety of single-particle excitations as a
function of momentum and energy. In the low-energy and
low-temperature regime, the self-energy reduces to essen-
tially two numbers, the quasiparticle effective mass and the
lifetime. For interacting Fermi gases, the quasiparticle
picture allows us, therefore, to summarize the effects of
all the interactions in the redefinition of these two parame-
ters, and to treat the interacting quantum system as a free-
fermion gas of quasiparticles. This constitutes an immense
simplification over a fully interacting quantum system and
has often been the starting point to understanding more
complex phenomena such as semiconductors and the
transistor, superconductivity, the BCS theory, and, more
recently, the giant magnetoresistance.

The initial experimental verifications of Fermi liquid
theory were quite indirect and mostly based on collec-
tive mode propagation and transport measurements, for
example, in simple metals, heavy-fermion materials
(CeAl3, LaRu2Si2), and liquid 3He. Only in recent years,
the angle-resolved photoemission spectroscopy (ARPES)
technique has allowed for a direct measurement for the
probability to find a single-particle excitation with a given
momentum and energy—the so-called spectral function
[2]. It has therefore been instrumental in providing a direct

measure for the existence and properties of quasiparticles.
However, the analysis of APRES spectra and a detailed
comparison with the theory remains difficult in solid-state
systems due to nontrivial interactions in the final state, and
insufficient knowledge of the dispersion even for noninter-
acting particles. The clean Fermi liquid system of 3He
does not easily lend itself to the equivalent of an ARPES
measurement.
Experiments with cold atomic gases provide a remark-

able alternative to tackle the question of interactions in
quantum fluids. These systems have the advantage of
combining short-range interactions with an unprecedented
control of the interaction strength. They also offer control
of the dimensionality of the system, and in particular have
allowed the realization of interacting two-dimensional fer-
mionic systems [3–6]. It was thus natural to develop an
equivalent of the ARPES technique for cold atoms to probe
the quasiparticle dynamics and the characteristics and
properties of Fermi liquids [7]. However, despite successes
in realizing ARPES experiments [5,8,9] and probing the
formation of a gap for attractive interactions, no compari-
son with the properties of two-dimensional Fermi liquids
has yet been made. Some aspects of Fermi liquid properties
in cold gases have so far been probed only in three dimen-
sions [10,11] by studying the magnetic susceptibility in the
strongly interacting regime above Tc.
Here, using momentum-resolved radiofrequency (rf)

spectroscopy [5,7–9], we extract the self-energy of a
two-dimensional Fermi gas with attractive interactions.
We find quantitative agreement with calculations based
on Fermi liquid theory. Moreover, we show that the
Hartree energy term can play a dominant role in the
quantitative understanding of ARPES spectra in harmoni-
cally confined Fermi gases.
We prepare a quantum degenerate Fermi gas of 40K

atoms in the jF ¼ 9=2; mF ¼ �9=2i � j � 9=2i and
jF ¼ 9=2; mF ¼ �7=2i � j � 7=2i hyperfine states in a
one-dimensional optical lattice of wavelength � ¼
1064 nm, populating a stack of approximately 40 individ-
ual two-dimensional quantum gases [3]. In the central
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layers, we confine a few thousand atoms per two-
dimensional gas. The radial confinement is harmonic with
a trap frequency of !r ¼ 2�� 127 Hz, and the axial trap
frequency is !z ¼ 2�� 75 kHz. After we ramp to the
desired magnetic field value near the Feshbach resonance
between the j�9=2i and j�7=2i states, we perform
momentum-resolved radiofrequency spectroscopy between
the j�7=2i and jF ¼ 9=2; mF ¼ �5=2i � j � 5=2i states
[5,9]. To this end, we apply a rf pulse of approximately
�rf ¼ 47 MHz with a Gaussian amplitude envelope with a
full width at half maximum of 280 �s. After a further
100 �s, we turn off the optical lattice, switch off the mag-
netic field, and separate the three spin components by
applying a magnetic field gradient. After letting the gas
expand freely for 12 ms, we take an absorption image and
average the density distribution of the j � 5=2i component

azimuthally, to obtain the density nð�; k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2x þ k2y

q

Þ,
where we have taken the energy zero at the Zeeman energy
EZðBÞ of the spin-flip transition in vacuum, i.e., � ¼
EZðBÞ=h��rf .

The parameter g characterizing the interaction strength
of the two-dimensional Fermi liquid is given by g ¼
�2�@2=½m lnðkFa2DÞ� [12]. Here, kF is the Fermi wave
vector and a2D the two-dimensional scattering length de-
fined via the binding energy of the confinement-induced
bound state EB ¼ @

2=ma22D. On the attractive side of a

Feshbach resonance, EB becomes exponentially small,
justifying the role of g as a small parameter. We consider
the weakly interacting regime 0 � 1= lnðkFa2DÞ< 1 and
study it in the normal state where the thermal energy kBT is
much larger than the energy scale for pairing. This realizes
a Fermi liquid state without the complications of
(pseudogap) pairing. In Fig. 1(a), we show a momentum-
resolved photoemission signal for 1= lnðkFa2DÞ ¼ 0:35 at
T=TF ¼ 0:27, where the free-particle dispersion has been
implicitly subtracted. Here, T is the temperature and
TF ¼ EF=kB with EF the Fermi energy. Figure 1(b) shows
the corresponding energy distribution curves (EDC) for
different values of the wave vector k. In order to take
into account the slightly asymmetric shape of the peak,
we use a combination of a Gaussian and a modified
Gumbel distribution to fit the energy distribution curves
[5], which we find to capture the feature very well for all
data sets taken. We compare our experimental data to a
theoretical calculation using the ladder approximation [13]
parameterized by the bound-state energy EB, fully taking
into account the experimental conditions such as inhomo-
geneity due to the trap and finite temperature (see
Supplemental Material [14]). Our theoretical modeling
improves over previous work, which has focussed on ho-
mogeneous Fermi liquids at zero temperature with repul-
sive [12,13] and attractive [15–17] interactions, as well
as on repulsive interactions at finite temperature [18].
The result of our calculation for 1= lnðkFa2DÞ ¼ 0:35 is
displayed in Figs. 1(c) and 1(d). An energy-resolution

broadening of 1.5 kHz was applied to the theoretical
data, which is experimentally measured for the noninter-
acting gas, and which corresponds to the Fourier-limited
width of the rf pulse. For the interacting gas, we experi-
mentally observe a larger width, which is not captured by
theory, and which therefore possibly stems from final-state
interactions.
We analyze the dispersion of the peak in Fig. 1 by

means of two parameters, the k ¼ 0 intercept E0, and the
curvature represented by an effective-mass parameter m�,
according to EmaxðkÞ ¼ E0 þ @

2k2

2 ð 1
m� � 1

mÞ. In Fig. 2, we

show the effective mass parameter for different values
of 1= lnðkFa2DÞ at T=TF ¼ 0:27. For zero interaction,
m� equals the free-particle mass to within 1% and E0 ¼
�1:0ð0:3Þ kHz. This data point calibrates our weak final-
state interactions. Increasing the interaction strength on the
attractive side of the Feshbach resonance leads to an in-
crease ofm� as the dressing of the bare fermions increases.
Experimentally, E0 does not show a significant variation
over this range.
Our experimental results and theoretical calculations dis-

play very good agreement with each other (see Fig. 2).
The thick blue line shows the theoretical m�=m for the
experimental Fermi energy and temperature, and aver-
aged over a distribution of two-dimensional gases with a
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FIG. 1 (color online). Momentum-resolved photoemission
signal in experiment and theory. (a) Measured signal at
1= lnðkFa2DÞ ¼ 0:35. A free particle corresponds to a straight
horizontal line. (b) Energy distribution curves at different mo-
menta @k. The solid lines represent a fit to the data. We see a shift
of the maximum toward lower energies, which indicates the
effective mass of the quasiparticles. The dashed line indicates
E0, the position of the peak at k ¼ 0. (c) and (d) Calculated
intensity and energy distribution curves for the same parameters
as in the experiment.
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Gaussian envelope of Fermi energies with a rms width of 46
layers. The dashed red line shows the result for the trap
average of the center layer only, indicating that the averaging
over several layers has only a very minor effect. When only
the first-order Hartree term in the self-energy—a density-
dependent shift without dynamical consequences—is taken
into account (green curve in Fig. 2), one obtains a nonlinear
contribution to the dispersion, which is a result of the in-
homogeneity of the system. This shows that the Hartree term
[19–21] plays an important role in the quantitative interpre-
tation of the momentum-resolved rf spectra in confined
geometries. The higher-order dynamical corrections reduce
the dispersion associated with the Hartree term. For
1= lnðkFa2DÞ< 0:4, the effect of these corrections is at the
limit of the experimental error bars. In order to study the
temperature dependence of the Fermi liquid properties, we
vary the temperature at an approximately constant
1= lnðkFa2DÞ. We observe thatm� decreases with increasing
temperature and approaches the bare particle mass
m�=m � 1 at approximately T ¼ TF (see Fig. 3), which
agrees very well with theory.

Finally, we turn our attention to the contact parameter
C [22–27]. The contact is determined by the two-particle
correlation function between atoms of opposite spin at

short distance gð2Þ"# ðjr" � r#jÞ, and it governs the momen-

tum distribution of a gas at large momenta according to
nðkÞ � C=k4 for k 	 kF. Through the universal Tan rela-
tions [22], the contact parameter provides an important
link between the microscopic physics of the short-range
atom-atom interactions and thermodynamic quantities. In
three dimensions, the contact has been measured from
photoemission spectra [25] and Bragg scattering [26], and
Tan’s relations have been experimentally verified. In two
dimensions, Tan’s relations have to be refined, and

the spectral line shape of rf spectra receives nontrivial
corrections [27].
The dimensionless contact parameter C0 ¼ C=k2F can be

measured from the high-frequency tail of the momentum-
integrated single-particle spectral function [28]. In two
dimensions, the spectral intensity I�ð�0Þ normalized to
the intensity of the rf pulse relates to the contact by [27]

I�ð�0Þ ¼ C0

2��02
ln2ð ~EB=EBÞ

ln2ð�0EF= ~EBÞ þ �2
¼ C0 � Ið�0Þ: (1)

Here, �0 ¼ h�=EF, and ~EB ¼ ~EB;3D is the binding energy

of the most weakly bound state of atoms in the final state.
Since the three-dimensional binding energy between the
j � 9=2i and j � 5=2i states is ~EB;3D � h� 3 MHz [29]

(in the relevant magnetic field range between 204 G and
209 G) and therefore much larger than @!z, the effects of
quasi two—dimensional confinement on the binding en-
ergy can be neglected. Generally, final state interactions
can play a significant role for the contact in two dimensions
since their contribution disappears only logarithmically
with increasing binding energy of the final state.
We extract the contact C0 from the data by dividing the

momentum-integrated intensity of the spectrum by the
function Ið�0Þ and fitting the resulting constant at large
�0. The inset in Fig. 4 shows an example for a typical data
set. In Fig. 4, we plot the measured C0 as a function of
1= lnðkFa2DÞ at T=TF ¼ 0:27 (solid blue points). We com-
pare our experimental results with the theory for the trapped
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FIG. 2 (color online). Dependence of the effective mass pa-
rameter on the interaction parameter 1= lnðkFa2DÞ. The thick
blue line shows the numerical calculation of the trap average and
averaging over a density distribution with an rms width of
46 layers for the experimental conditions. The red dashed curve
is the trap average for the central layer only. The thin green curve
includes only the Hartree term in the self-energy.
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FIG. 3 (color online). Temperature dependence of the effective
mass parameter. For our lowest temperature T=TF ¼ 0:27, this
corresponds to an interaction strength of 1= lnðkFa2DÞ ¼ 0:35;
samples at higher temperatures contain more atoms and have a
slightly larger Fermi energy, which decreases the coupling
strength to 1= lnðkFa2DÞ ¼ 0:32 at T=TF ¼ 1:09. The lines
show the numerical simulation for the experimental parameters.
The thick blue line is the trap average over 46 layers correspond-
ing to the experimental conditions. The red dashed curve is the
trap average for the central layer only. The thin green line
includes only the Hartree term in the self-energy. The difference
between Hartree only and the full self-energy changes with the
number of trapped atoms, showing the intricate relation between
the Hartree energy and the effective mass parameter.
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gas at finite temperatures (solid blue line). The contact
was calculated using the theoretical momentum-integrated
spectral function and fitting a pure 1=�2 decay, as the theory
does not include final-state interactions. Our calculations
show that the value of C0 is reduced by temperature and
inhomogeneity due to the transfer of spectral weight in-
duced by the Hartree term from the 1=�2 tail to low energy.

The agreement is excellent in the regime of weak cou-
pling. The calculation of the temperature-dependent con-
tact at larger coupling requires further study, as the effects
of the bound state become important when EB approaches
kBT. For comparison, we also show the zero-temperature
prediction of the contact for a homogeneous system based
on a quantum Monte Carlo calculation [30] (dashed gray
line). In order to derive the contact from the total energy
data of Ref. [30], we have used the adiabatic theorem
dE0=d½lnðkFa2DÞ� ¼ C0=�, where E0 ¼ E=EF. In the
weak coupling regime, both the experimental results as
well as our theoretical values are slightly below the zero-
temperature theory. This is the expected behavior of the
contact, which decreases with increasing temperature. In
the strongly interacting regime, our data come closer to
the zero temperature prediction, possibly because when
EB > kBT the contribution of the bound state to the contact
becomes more dominant. Finally, we also show the
prediction of the contact for the homogeneous Fermi liquid
at zero temperature, which has been derived from the
power series expansion of the total energy per particle
[13] 2E0=N¼1�1=lnðkFa2DÞþA= lnðkFa2DÞ2þ . . . with
A ¼ 3=4� lnð2Þ.

The above results show that momentum-resolved rf
spectroscopy can be employed to extract important infor-
mation about a Fermi liquid, such as the self-energy, and

that disentangling the dynamical part of the self-energy
from the nontrivial contributions arising from the Hartree
term in the trap is important. The latter could be overcome
only by using confining potentials different from the usu-
ally employed harmonic potential, since our theoretical
analysis shows that the Hartree contribution is independent
of the strength of the harmonic potential.
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