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We investigate dissipation-induced p-wave paired states of fermions in two dimensions and show

the existence of spatially separated Majorana zero modes in a phase with vanishing Chern number. We

construct an explicit and natural model of a dissipative vortex that traps a single of these modes, and

establish its topological origin by mapping the problem to a chiral one-dimensional wire where we

observe a nonequilibrium topological phase transition characterized by an abrupt change of a topological

invariant (winding number). We show that the existence of a single Majorana zero mode in the vortex core

is intimately tied to the dissipative nature of our model. Engineered dissipation opens up possibilities for

experimentally realizing such states with no Hamiltonian counterpart.
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The search for topological phases of matter in which
elementary excitations exhibit non-Abelian statistics has
brought two-dimensional (2D) p-wave paired superfluids
and superconductors to the forefront of theoretical and
experimental condensed-matter research [1–5]. The bulk
of these systems is fundamentally intriguing in that it
reveals physics beyond the Landau paradigm: different
phases are characterized by distinct values of a nonlocal,
topological order parameter known as the Chern number,
and phase transitions occur whenever the topology
changes, signaled by discontinuities in this integer-valued
topological invariant. In topologically nontrivial phases
corresponding to an odd Chern number, vortices with
odd vorticity have been predicted to carry unpaired
Majorana fermions, and to exhibit non-Abelian exchange
statistics as a result [6].

In this Letter, we explore the concept of topological
order and its connection to the edge physics in a nonequi-
librium scenario based on engineered dissipation [7,8].
Prior work on quantum-state engineering in driven-
dissipative systems has shown that topologically nontrivial
states of many-body Hamiltonians can also be prepared
as steady states of a dissipative dynamics [9]. In contrast,
we demonstrate that dissipation can lead to a novel
manifestation of topological order with no Hamiltonian
counterpart. Specifically, we show that spatially separated
Majorana zero modes (MZMs) can be obtained in a 2D,
dissipation-induced p-wave paired phase of spin-polarized
fermions with vanishing Chern number. Remarkably, a
phase whose topological nature is seemingly trivial—
according to the standard diagnostic tool provided by the
Chern number—can therefore exhibit phenomenological
features characteristic of a nontrivial one, which ultimately
leads to the counterintuitive fact that vortices with odd

vorticity may obey non-Abelian exchange statistics in a
bulk with zero Chern number.
We demonstrate these results in a simple model moti-

vated by an implementation scheme based on cold atoms
and optical vortex imprinting [10], where fermion parity is
microscopically conserved. We show that they hold over an
extended parameter range, in which we identify a topo-
logically nontrivial phase missed by Chern number con-
siderations. Critical points are revealed upon introducing a
vortex, in which case we establish the phenomenology of a
nonequilibrium topological phase transition characterized
by (i) a discontinuity in a topological invariant (winding
number), (ii) divergent length and time scales [8,11–13],
and (iii) a divergent localization length associated with a
MZM bound to the vortex core.
The basic mechanism behind our findings relies on the

fact that the introduction of a (dissipative) vortex changes
the system in two crucial respects: it modifies its topology,
as argued in Refs. [14,15], and imposes specific (dissipative)
boundary conditions. Here we show that our model of a
vortex with odd vorticity can be mapped to a 1D chiral
fermion problem [16] characterized by a nontrivial topo-
logical invariant (winding number) �1D ¼ 2 despite a van-
ishing bulk Chern number. In such a situation, bulk-edge
correspondence arguments [4,17–19] suggest the existence
of a pair of MZMs in the vortex core. However, owing to the
dissipative boundary conditions imposed by the geometry of
the vortex core alone—which underpins the universal nature
of our findings—a single MZM only is found in the core.
This phenomenon crucially relies on dissipation, and there-
fore has no Hamiltonian counterpart. It shows that the
potentially harmful effect of dissipation on MZMs [20–22]
need not be entirely destructive, but may instead give rise to
intriguing novel effects.
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Dissipative framework.—We consider a system of N

fermionic sites ayi , ai evolving under a purely dissipative
dynamics governed by a Lindblad master equation

@t� ¼ �
XN

i¼1

�
Li�L

y
i � 1

2
fLy

i Li; �g
�
; (1)

where � is the system density matrix, � the damping rate,
and Li are Lindblad operators which are linear in the
fermionic operators. The steady state of such dynamics is
pure if and only if the Lindblad operators form a set of
anticommuting operators, i.e., fLi; Ljg ¼ 0 for all i, j ¼
1; . . . ; N. If so, it can be identified with the ground state of

the parent HamiltonianHparent �
P

iL
y
i Li. Although purity

is not required for the existence of topological order [9], we
will only encounter steady states that are pure in the bulk,
whose (bulk) topological properties can be inferred from
Hparent alone. In our dissipative setting, the analog of a

gap in a Hamiltonian spectrum is a dissipative gap in the
Liouvillian spectrum, which dynamically isolates the sub-
spaces corresponding to the bulk and edge modes, thereby
providing the counterpart of a gap protection through the
quantum Zeno effect [23]. Most importantly, the counter-
part of topological ground-state degeneracy is the exis-
tence of a nonlocal decoherence-free subspace associated
with zero-damping Majorana modes � ¼ �y which satisfy

the orthogonality condition fLi; �g ¼ fLy
i ; �g ¼ 0 for

all i (see Supplemental Material [24]). Clearly, this condi-
tion is more restrictive than the one for a zero-energy
Majorana mode of a Hamiltonian, which reads (for Hparent)

½Hparent; �� ¼
P

iðLy
i fLi; �g � fLy

i ; �gLiÞ ¼ 0. The crucial

difference stems from the first ‘‘recycling’’ term on the
right-hand side of Eq. (1), and is the reason why dissipation
can crucially modify the Majorana physics found in the
Hamiltonian context.

The model.—We consider a square-lattice system driven
by so-called ‘‘cross’’ Lindblad operators defined as the
following quasilocal linear superposition of fermionic cre-

ation and annihilation operators ayi , ai:

Li � Cy
i þ �ei�Ai

¼ �ayi þ ðayi1 þ iayi2 þ iayi3 þ iayi4Þ
þ �ei�ðai1 þ iai2 � iai3 � iai4Þ; (2)

where � 2 R, �> 0, � 2 ½0; 2�Þ, and i1, i2, i3 and i4 are
the four clockwise-ordered nearest-neighboring sites of i.
The creation and annihilation parts of Li have s- and
p-wave symmetries, respectively. The dissipative dynam-
ics generated by such Lindblad operators can be obtained,
for example, as the long-time limit of a microscopically
number-conserving (quartic) dissipative dynamics gener-
ating phase-locked paired states (see Supplemental
Material [24]). In that context, the global relative phase
� between the creation and annihilation parts of Li

emerges through spontaneous breaking of the global Uð1Þ

symmetry, and the relative strength � is determined by the
average particle number. The dimensionless parameter �,
on the other hand, can be used to tune the system across
phase transitions, as will be shown below.
The steady-state bulk properties of the system are

most easily revealed in the infinite-size limit. Defining

coefficients uij, vij such that Li ¼
P

jðuijaj þ vija
y
j Þ, the

momentum-space cross Lindblad operators take the form

Lk ¼ ukak þ vka
y
�k, where uk, vk are the Fourier trans-

forms of uij, vij. Properly normalized, they become

Bogoliubov quasiparticle operators associated with damp-

ing rates �k ¼ �N k, where N k ¼ 	y
k	k with 	T

k ¼
ðuk; vkÞ. One can easily verify that the cross Lindblad
operators form a complete set of anticommuting operators,
so that the system is driven into a unique and pure complex
p-wave paired state j�i defined by the condition Lkj�i ¼
0 (for all k) and fully characterized by the real vector nk ¼
	y
k�	k, where � is a vector of Pauli matrices. Since (i) this

steady state is pure (i.e., jnkj ¼ 1 for all k) and (ii) time-
reversal symmetry is broken due to the complex p-wave
nature of the state [25], the topological invariant relevant to
that case coincides with the Chern number �2D commonly
used in 2D Hamiltonian systems (see e.g., Ref. [26]). Here
we find that the Chern number vanishes [27], namely,

�2D � 1

4�

Z

BZ
d2knk � ð@kxnk � @kynkÞ ¼ 0 (3)

(where BZ stands for ‘‘Brillouin zone’’) for all values of �
except at the isolated points � ¼ 0 and � ¼ �4 where the
dissipative gap closes (see Supplemental Material [24]).
Since there is no extended parameter range with nontrivial
topological order, one naively expects topological features
such as isolated MZMs to be absent when edges or vortices
are introduced. We will show below that such conclusions
are premature: single, unpaired MZMs are generally found
in the parameter range 0< j�j< 4 when dissipative vor-
tices with odd vorticity are introduced.
Physically, the special values � ¼ 0, �4 appear as criti-

cal points since the dissipative gap closes at these values,
leading to divergent length and time scales characteristic of
a second-order phase transition [12,13]. However, the sym-
metry of the steady state (encoded in nk) and the value of
the topological invariant �2D both are identical in the neigh-
borhood of those points. It thus seems as if the apparent
critical behavior can neither be traced to a conventional
phase transition (with broken symmetry), nor to a topologi-
cal one (with a discontinuity in the topological invariant).
Below we will show that the introduction of a vortex makes
it possible to define another topological invariant. This will
allow us to identify � ¼ �4 as genuine critical points
associated with topological phase transitions.
Introducing a dissipative vortex.—We now introduce a

dissipative vortex, by modifying the annihilation part Ai ¼P
juijaj of the above cross Lindblad operators. More spe-

cifically, we replace the translation-invariant coefficients
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uij � ~uij considered so far by position-dependent coeffi-

cients of the form uij ¼ fðrjÞe�i‘’j ~uij, where (rj, ’j) are

polar coordinates defined with respect to a particular site i0
chosen as the center of the vortex core. Two crucial ingre-
dients appear in this definition: (i) a real, rotation-invariant
vortex profile function fðrÞwhich goes to zero in the vortex
core, and (ii) a vortex phase that winds ‘ times around the
origin i0 (‘ being the vorticity). These properties of a
dissipative vortex naturally arise in an implementation
with ultracold atoms based on optical vortex imprinting
(see Supplemental Material [24]). They are fully analogous
to those of a vortex in a Hamiltonian scenario. In particular,
a� flux is optically imprinted onto the matter system in the
case ‘ ¼ 1.

In what follows, we show that an odd dissipative vortex
(i.e., with odd vorticity) generically traps a single, isolated
MZM despite the seemingly trivial topological nature of
the bulk. We focus on the simplest case of a single vortex
with ‘ ¼ 1 and proceed in two main steps. First, we
demonstrate that the vortex phase crucially modifies the
topology of the system and construct a mapping to an
effective 1D model. Second, we examine the effect of the
dissipative ‘‘boundary’’ conditions imposed in the vortex
core by the profile function fðrÞ, and show that the latter are
responsible for the existence of a single MZM in the core.

Mapping to a chiral 1D wire.—To exemplify how an odd
dissipative vortex changes the topology of the system, we
consider the case ‘ ¼ 1 and assume, without loss of gen-
erality, that the vortex profile function fðrÞ vanishes as
r ! 0 and satisfies fðrÞ ¼ 1 for r > rc. We identify the
region r < rc as the vortex core. In order to capture the
generic properties of the bulk, we first focus on an annular
region centered around the vortex core [Fig. 1(a), left] where
fðrÞ is constant and the relevant p-wave operator carries the
vortex phase, e�i’ð@x þ i@yÞ (in the continuum limit, for

simplicity). As made explicit in the Supplemental Material
[24], our model is, in this region, formally equivalent
to a cylinder model with a p-wave operator of the form
@x0 þ i@y0 [(x0, y0) being Cartesian coordinates on the

cylinder; see Fig. 1(a), right] as in the original translation-
invariant model on the plane [see Eq. (2)]. There exists
therefore a one-to-one correspondence between the original
planar model with an ‘ ¼ 1 vortex and the same model in
cylinder geometry with no vortex. Physically, this stems
from the fact that the gauge field e�i’ imposed on the plane
to describe the vortex naturally arises on the cylinder owing
to the extrinsic curvature of the latter.

In order to further extract the essence of the single-vortex
problem, we revert to the original lattice description and take
advantage of the translation invariance along the y0 direction.
Defining Fourier-transformed Lindblad operators Lx0 ðky0 Þ /P

y0e
�iky0y

0
Lx0;y0 , we reduce the system to a stack of 1D wires

that can be investigated along the lines of Ref. [9]. In the two
momentum sectors corresponding to ky0 ¼ 0 and �, the

relevant 1D Lindblad operators take the form

Li ¼ �0ayi þ ðayi�1 þ ayiþ1Þ þ ð�ai�1 þ aiþ1Þ; (4)

where i indexes the lattice sites in the x0 direction [such
that Li � Lx0 ðky0 ¼ 0 or�Þ] and �0 � �þ 2 (�� 2) for

ky0 ¼ 0 (�). In these two particular sectors, the system thus

reduces to a 1D wire with chiral symmetry [18]. The steady-
state bulk properties of this wire can be unveiled in the
infinite-size limit, in which case the Lindblad operators
form a complete set of anticommuting operators, leading to
a pure steady state described by a real unit vectornk as above
[see Eq. (3)]. Owing to chiral symmetry, this state can be
characterized by a ‘‘winding number’’ topological invariant
�1D [29]. As detailed in the Supplemental Material [24], we
obtain

�1D � 1

2�

Z

BZ
dka � ðnk � @knkÞ ¼ 2 (5)

or j�0j< 2 (i.e., for 0< j�j< 4), and �1D ¼ 0 otherwise
(a being a unit vector orthogonal to nk whose existence is
guaranteed by chiral symmetry). We thus find nontrivial
topological order in the parameter range delimited by the
special points �¼0 and �4 where the Chern number �2D

exhibits discontinuities. Figure 1(b) illustrates the resulting
topological phase diagram: nonequilibrium topological quan-
tum phase transitions occur at the critical values
�¼�4, while � ¼ 0 corresponds to an isolated point sepa-
rating two topologically equivalent phases. In agreementwith
the full 2Dmodel, the dissipative gap of the 1Dwire closes at
each of these values (see Supplemental Material [24]).

FIG. 1 (color online). Mechanism ensuring the existence of a
single MZM in the core of an odd dissipative vortex. (a), Left:
‘ ¼ 1 vortex on the plane, characterized by a core (blue gra-
dient) and a phase factor premultiplying the p-wave operator
@x þ i@y. Right: Mapping from the (grey) annular region around

the vortex core to the cylinder—where the vortex phase disap-
pears from the relevant p-wave operator—and reduction to a
(chiral) 1D wire problem (thick red). (b) Topological phase
diagram for the planar model of Eq. (2) with no vortex (dotted
blue, characterized by the Chern number �2D) and with a single
‘ ¼ 1 vortex (red, characterized by the winding number �1D).
(c) Dissipative boundary conditions of the 1D wire inherited
from the vortex core profile (see text).
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Dissipative boundary conditions.—The fact that we can
identify a nontrivial topological invariant in an effective
1D model describing the region surrounding the vortex
core strongly supports the existence of interesting
‘‘edge’’ physics inside the latter. The bulk steady state of
the 1D wire, which is pure, can equivalently be described

as the ground state of the parent Hamiltonian Hparent ¼P
iL

y
i Li. Bulk-edge correspondence arguments based on

Hparent would therefore suggest the existence of �1D ¼ 2

MZMs at the edges of the wire—i.e., in particular, in the
vortex core. In our general dissipative setting, however,
bulk-edge correspondence arguments can only be formu-
lated in the presence of a dissipative gap and in the absence
of modes corresponding to subspaces in which the steady
state is completely mixed, which we refer to as purity zero
modes (see Supplemental Material [24]). Keeping in mind
that the presence of dissipative boundary conditions can
potentially give rise to such modes, we now proceed to
examine the ‘‘edge’’ physics that emerges in the vortex
core as a result of the dissipative boundary conditions
imposed by the vortex profile function fðrÞ. To this end,
we first extend the above mapping by reducing the inner
radius of the annular region shown in Fig. 1(a) to zero.
The resulting extended 1D wire is depicted in Fig. 1(c); its
first, leftmost site corresponds to the center of the vortex
core where fðrÞ vanishes, as shown by the blue curve. The
fact that fðrÞ varies from site to site in the vortex core
crucially leads to a violation of the purity condition
fLi; Ljg ¼ 0 (for all i, j) which is satisfied in the bulk,

as mentioned above. One can easily verify that the anti-
commutator fLi; Ljg increasingly deviates from zero for

ji� jj � 2 upon approaching the left edge of the wire. As
a consequence, the steady state increasingly loses purity
and departs from the ground state of Hparent featuring a

pair of MZMs. Remarkably, one and only one MZM
survives at the edge of the wire—or, equivalently, in the
vortex core—in the full parameter range 0< j�j< 4
associated with a nontrivial topological phase. This
mode is explicitly constructed in the Supplemental
Material [24], and is shown to be exponentially local-
ized, on a characteristic length scale 	 ¼ 	ðj�0jÞ � 1=
j logðj�0j=2Þj which diverges at j�0j ¼ 2, i.e., at �¼�4.
At these values which coincide with the critical points
found above, the norm of the wave function associated
with the MZM diverges with the length of the wire, while
the dissipative gap closes in the bulk. This further con-
firms the onset of a nonequilibrium topological quantum
phase transition. The second MZM naively expected in
the vortex core, by contrast, acquires a finite damping rate
and becomes an environmental degree of freedom with no
correlations with the rest of the system. As shown in the
Supplemental Material [24], any zero mode of Hparent

which acquires a finite damping rate is effectively traced
out of the system in steady state, independently of the
initial conditions. We refer to such a mode with no

Hamiltonian counterpart as an intrinsic purity zero
mode, in accordance with the fact that its existence is
intrinsic to the dissipative dynamics itself.
The above findings are supported by extensive numeri-

cal simulations, confirming the existence of a single
MZM trapped in the vortex core in the full parameter range
0< j�j< 4 for arbitrary vortex profile functions, as well
as the divergence of the corresponding localization length
upon approaching the critical points � ¼ �4 (see Fig. 2).
As expected, an intrinsic purity zero mode is found in the
vortex core. Similar features are obtained for odd vortices
with ‘ > 1; even vortices, in contrast, do not exhibit any
MZMs, as expected from the fact that the vortex phase
can be gauged away in that case (see, e.g., Ref. [1]). Our
numerical results generally support the main conclusion
that odd dissipative vortices generically trap single, iso-
lated MZMs despite the seemingly trivial topological
nature of the system. Following the arguments of
Ref. [9], we expect such vortices to exhibit non-Abelian
exchange statistics when braided around each other
through adiabatic parameter changes.
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FIG. 2 (color online). Numerical results for a single dissipative
vortex with ‘ ¼ 1 on a square lattice of 35� 35 sites with unit
spacing and � ¼ 1. Left: Typical form of the MZMs localized in
the vortex core and on the edge, respectively (here for � ¼ 3),
and localization length scale 	 associated with the MZM trapped
in the core. Right: Low-lying part of the damping and purity
spectra for � ¼ 2, both featuring a gap with two zero eigenval-
ues. All results were obtained for a vortex profile fðrÞ ¼
ðr=dÞe�ðr=	Þ2 with d ¼ 10 and 	 ¼ 20.
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