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Transport processes on spatial networks are representative of a broad class of real world systems which,

rather than being independent, are typically interdependent. We propose a measure of utility to capture key

features that arise when such systems are coupled together. The coupling is defined in a way that is not solely

topological, relying on both the distribution of sources and sinks, and the method of route assignment. Using

a toy model, we explore relevant cases by simulation. For certain parameter values, a picture emerges of two

regimes. The first occurs when the flows go from many sources to a small number of sinks. In this case,

network utility is largest when the coupling is at its maximum and the average shortest path is minimized.

The second regime arises when many sources correspond to many sinks. Here, the optimal coupling no

longer corresponds to the minimum average shortest path, as the congestion of traffic must also be taken into

account. More generally, results indicate that coupled spatial systems can give rise to behavior that relies

subtly on the interplay between the coupling and randomness in the source-sink distribution.
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Systems that can be represented as a group of interacting
networks are found everywhere in modern life [1–3]. From
so-called smart power grids—which couple electrical
distribution networks with ICT control networks [4]—to
interactions between other types of critical infrastructure
networks, such as food and water supply, transport, fuel,
and financial transactions. Recent theoretical studies on the
subject have generated a great deal of interest by demon-
strating that coupling two or more networks together can
lead to system-wide behavior which differs fundamentally
from the behavior of each individual network [5–14].
These studies describe essentially cascadelike processes
where typically either inverse percolation [6,9,11] or sand-
pile methods [10] are used (or variants thereof). In the
former case, the robustness of the system is characterized
by the size of the remaining giant connected component,
while for the latter, it is the size of the largest sand cascade.
In both cases, the quantity of interest is directly related to
the topology of the network and does not permit any
consideration of dynamical processes which may take
place on the network. Furthermore, robustness against
cascade failures is not the only consideration for those
affected by such real world systems.

One broad class of processes that occur on a network are
general transport processes, or flows [15]. Whether flows of
people, fluids, or electrical currents, these systems can be
characterized by specifying the topology of the underlying
network, a source-sink distribution, and a dynamic (Fig. 1).
Where, to avoid confusion, we only imagine dynamical
processes that converge to a steady state—resulting in a
stationary distribution of flows over the network.
Unfortunately, the methods of analysis mentioned above
do not capture many of the typical features one might
expect here. For example, it is easy to imagine a simple
source-sink distribution that allows the network to be split

into two distinct components such that the flows are
unaffected. In this case, the size of the giant component
may decrease but the network is still operating well. With
this example in mind, one question that arises is: How
should an interacting, or coupled, set of flow networks be
characterized, and what are the interesting features of such
systems? While any system-wide behavior is intimately
linked with the particular dynamics, some understanding
can be gained by investigating the properties of simple
examples that are chosen well enough to represent some
subclass of these systems. In this study, we report the
results of investigating such a toy model, and highlight
the interesting features which we believe might be typical
of many problems in this class.
Most existing studies of coupled networks focus on

variants of the random graph [6,10,11], primarily due
to the simplicity with which properties can be calcu-
lated. However, many physical networks (i.e., electrical,

FIG. 1 (color online). A system made of two coupled networks
where the nodes of network 2 form a subset of the nodes of
network 1. Edges of network 1 are shown in black, edges of
network 2 are shown in red (gray offline), and nodes in common
to both networks are considered to be coupled (shown by dashed
lines). Highlighted in green (gray offline), we represent a path
between two nodes, the ‘‘source’’ i and the ‘‘sink’’ j.
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transportation, ICT etc.) are spatial networks and are often
planar [16]. For this reason, this Letter focusses on coupled
planar networks and for completeness we discuss briefly
the case of coupled Erdős-Rényi random networks. In
addition, coupled spatial networks are usually found to
be linked by a set of nodes common to both networks
(note that this is, however, not a necessary limitation of
the model, but simply a more realistic assumption for
spatial networks). For example, this is the case for a road
network coupled to a rail or subway network where all the
nodes of the road network are not nodes of the rail network,
but conversely, all stations are located at points which can
be considered as nodes in the road network. Motivated by
this simple example, we construct a first random planar
network as the usual Delaunay triangulation [17] of points
in the plane. We then construct a second network based on
a random subset of the points used to construct the first
network. Our model thus comprises individual networks
that are each planar Delaunay triangulations, forming a
combined network that is not necessarily planar (see
Fig. 2) and where the nodes of the different networks
with the same spatial location are linked together. Rather
than considering a dynamical system which acts to mini-
mize a global quantity—such as electrical networks, where
the dissipated power is minimized—we allocate flows on
the network following a basic transportation analogy.
Here, the source-sink distribution is replaced by an
origin-destination (OD) matrix Tij. This has the benefit

that it explicitly specifies the flow between node i and
node j. Therefore all that remains is to decide a method
of route assignment. The obvious choice is to use the
weighted shortest path, where the number of such paths
between nodes i and j is denoted by �ij (which very likely

is not larger than one for the weighted networks considered
here). In our model, the weight associated with each edge is
the length of that edge multiplied by a factor 0 � �n � 1,
which is common to all edges belonging to the same net-
work. �1ð2Þ corresponds to the larger (smaller) network and

the ratio � ¼ �2=�1 is a single parameter that controls the
relative weight per unit distance between the two networks.
In order to simplify further, we impose the artificial
constraint that � � 1. This has the effect that a journey
on the smaller network (n ¼ 2) is favored over a journey of
equivalent distance for the larger network (n ¼ 1).
Previous studies of interacting networks use the term

coupling to describe how well two networks are linked.
Typically, this is a purely topological definition, i.e., the
fraction of nodes from one network which link to another
[5], or the probability that a particular node has an edge
which connects both networks [10]. For transport processes,
a better measure of interaction must include details of how
the flows are distributed. Here, we define the coupling as

� � X

i�j

Tij

�coupled
ij

�ij

; (1)

where�
coupled
ij is the number of shortest paths between nodes

i and j, which include edges from both networks, and where
the entries of the OD matrix Tij are normalized, i.e.,P

ijTij ¼ 1. It is clear from Eq. (1) that � 2 ½0; 1� is just
the fraction of travellers that use both networks. Such a
definition is dependent on the method by which the flows
are allocated and not just on the system topology. Indeed, for
a given allocation method and network topology, there is
usually a maximum value of � strictly less than one. In our
model, the coupling is controlled by choosing �. By virtue
of changing the weights associated with each network, �
changes the (weighted) shortest path between any two
nodes. For example, a value of � close to one indicates little
difference between the two networks and hence, on average,
shortest paths do not utilize both networks. By contrast, a
low value of � (close to zero) gives rise to significantly
lower weights on the second network and therefore shortest
paths typically use both networks.
With Eq. (1) in mind, instead of investigating the like-

lihood of catastrophic cascade failures, we consider more
general measures of how well the system is operating. For
example, one such measure is the average distance trav-
elled �d ¼ P

i�jTijdij where dij is the distance travelled

between nodes i and j. For well-designed systems �d should
be small (i.e., water or food supply, the Internet, transpor-
tation, etc.). Another important quantity, which is a simple
proxy for traffic, is the edge betweenness centrality, de-
fined as xe ¼

P
i�jTijð�ijðeÞ=�ijÞ, where subscript e is

used to label edges, and �ijðeÞ is the number of shortest

paths between nodes i and j, which use edge e. The
betweenness centrality allows us to introduce the Gini
coefficientG 2 ½0; 1�which is typically used in economics
for the purpose of describing the distribution of wealth
within a nation. Here it is used to characterize the disparity
in the assignment of flows to the edges of a network, some-
thing that has been done before for transportation systems
such as the air traffic network [18]. For example, if all flows
were concentrated onto one edge, G would be one, while if

FIG. 2 (color online). Each instance of the system is generated
according to the following process: (a) First, N1 nodes (here
N1 ¼ 30) are positioned at random within the unit circle and the
Delaunay triangulation is produced; (b) the second network is
then generated by drawing N2 (here N2 ¼ 10) nodes uniformly
from the existing ones (N2 � N1) and, once again, computing
the Delaunay triangulation; (c) the combined system is no longer
planar and can be represented as the top-down view of Fig. 1
(where zero weights are assigned to the dotted interconnecting
lines).
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the flows were spread evenly across all edges, G would be
zero. We use the definition according to Ref. [19]

G � 1

2E2 �x

X

p

X

q

jxp � xqj; (2)

where subscripts p and q label edges, E is the total number
of edges, xp is the flow assigned to edge p as defined earlier,

and �x ¼ P
pxp=E is the average flow on an edge.

Unfortunately, it is impractical to consider the interplay
between �, �d, and G, for all possible OD matrices and we
start with the specific example of a monocentric OD
matrix; i.e., all nodes travel to the origin. We then add
noise by rewiring each link to a random destination with
probability p and with probability 1� p leave the link
connected to the origin (see Fig. 3). We then proceed by
calculating the quantities h�i, h �di, and hGi for different
values of p and �, where angle brackets h� � �i represent an
ensemble average. The results are shown in Fig. 4, where
each data point corresponds to an average over fifty in-
stances of the OD matrix for each of fifty instances of the
coupled network geometry. We find that, as the coupling
increases, the length of the average shortest path decreases
[Fig. 4(a)]. This is straightforward to understand since the
increased coupling is simply a result of reducing �.
Furthermore it is clear that increasing randomness in the
OD matrix increases the length of the average shortest path
by an almost constant value, irrespective of the coupling.
By contrast, the behavior of the Gini coefficient at different
couplings [Fig. 4(b)] is less easily explained. Consider
instead Fig. 5. Here, each colormap shows the distribution
of flows resulting from many instances of the system.

The first two plots, Figs. 5(a) and 5(b), were generated
from OD matrices rewired with low probability (p ¼ 0:2),
i.e., almost monocentric. The ratios of edge weights per
unit distance between the two networks are � ¼ 0:9 and
� ¼ 0:1 respectively. Therefore each diagram corresponds
to a point on the blue line in Fig. 4(b). For � ¼ 0:9, there is
minimal coupling between the networks and a high con-
centration of flows are seen around the origin. Since the
flows are disproportionately clustered, this configuration is
described by a high Gini coefficient. By contrast, for
� ¼ 0:1, the difference in the edge weights means that it

can be beneficial to first move away from the origin in
order to switch to the ‘‘fast’’ (low�) network.We therefore
see a broader distribution of flows with small areas of
high concentration around coupled nodes. The emergence
of these hotspots away from the center also corresponds to
a high Gini coefficient—and therefore the blue line in
Fig. 4(b) is relatively flat. Figures. 5(c) and 5(d) correspond
to the red line of Fig. 4(b): generated from OD matrices
rewired with high probability (p ¼ 0:8). We observe that
even for� close to one, the spatial localization of flows is less
than forp ¼ 0:2—resulting in a lowerGini coefficient. As�
is decreased, the second network becomes more favorable
and coupling hotspots can be seen once again—resulting in a
highGini coefficient and a positive gradient for the red line of
Fig. 4(b). This result points to the general idea that random-
ness in the source-sink distribution leads to local congestion
and more generally to a higher sensitivity to coupling.
Heuristically, one might consider this a simple model of

a two mode transportation system in the low density regime
(where the effects of congestion do not affect route choice)
such as a road network coupled to a rail network. Users
select the quickest route to their destination which implies
that the scale factors �road and �rail represent the inverse of
the average speed associated with each mode. The result is
that decreasing (increasing) the ratio of these factors, �, has
the effect of increasing (decreasing) the relative speed of rail
above road—and hence the coupling. In this picture, a low
value of the Gini coefficient indicates that the system uses
all roads to a similar extent, while a high value indicates that
only a handful of roads carry all the traffic. In addition, we
assert that it is likely that a designer or administrator of a real
system would wish to simultaneously reduce the average
travel time and minimize the disparity in road utilization. To
serve this purpose, we define a ‘‘utility’’ functionF ¼ h �di þ
�hGi, where it is immediately apparent from Fig. 4 that, for
certain values of �, the function F will have a minimum.
That is, a nontrivial (i.e., nonmaximal) optimum � will
emerge. Figure 6(a) shows that, whether a nontrivial
optimum coupling exists depends on the OD matrix. For

FIG. 3 (color online). Representations of OD matrices where
each arrow corresponds to an entry in Tij and which relates to

the set of points of Fig. 2. (a) A monocentric OD matrix.
(b) A monocentric OD matrix randomly rewired with probability
p ¼ 0:5.

FIG. 4 (color online). Simulation results for the average short-
est path and the Gini coefficient [N1 ¼ 100, N2 ¼ 20, and
p values: 0 (purple dots), 0.2 (blue squares), 0.4 (green dia-
monds), 0.6 (orange triangles), and 0.8 (red inverted triangles)].
When the coupling increases, the average shortest path decreases
and the Gini coefficient can increase for large enough disorder.
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OD matrices rewired with a high probability, increasing the
speed of the rail network reduces the road utilization as
flows become concentrated around nodes where it is pos-
sible to change modes. Dependent on the value of �, the
effect of reduced utilization can outweigh the increased
journey time, leading to a minimum in F. Monocentric
OD matrices, by contrast, have inherently inefficient road
utilization when applied to planar triangulations, regardless
of the speed of the rail network. Therefore no minimum is
observed, and hence no (nontrivial) optimum �. More sys-
tematically, we plot in Fig. 6(b) the minima ��ðpÞ of qua-
dratic best-fit curves obtained from Fig. 6(a), each
corresponding to a different value of p. Defining p�, the
value of p for which ��ðp�Þ ¼ 1, it is possible to categorize
the system into one of two regimes: if p < p�, then the
optimal coupling is trivially the maximum; otherwise if
p � p�, a nontrivial optimal coupling exists. We note that
similar effects can be observed on other nonplanar networks
such as coupled Erdős-Rényi randomnetworks: the behavior
is qualitatively the same but the results are much less
pronounced due to the absence of spatial structure and a
lesser localization of centrality.

In conclusion, the model is characterised by two compet-
ing forces—the desire to move all flows onto the most
efficient network, while also ensuring that congestion does
not arise around the nodes which connect both networks.
We observe that the optimization of such a system can be
sensitive to randomness introduced in the OD matrix. The
broader interpretation of our work is that, spatial, space-
filling, networks such as transportation networks or the
electricity grid, may be inherently fragile to certain changes
in supply and demand, such as the transition from central-
ized power generation to decentralized prosumers [20]. This
behavior is not captured by the existing literature, and
demonstrates an alternative view of transport processes on
interacting networks. Indeed, while the assumptions made
have a convenient interpretation in terms of bimodal trans-
portation systems, we expect that the results hold for a
broader class of systems and welcome work in this area.
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FIG. 5 (color online). Colormaps showing normalized edge
flows—plotted at the midpoint of each edge—over many in-
stances of the system. Colors are assigned from lightest to
darkest, starting with white (for zero flow) and moving through
yellow, orange and red for higher values of flow, until reaching
black (maximum flow). Each subfigure corresponds to the fol-
lowing parameter values: (a) p ¼ 0:2, � ¼ 0:9; (b) p ¼ 0:2,
� ¼ 0:1; (c) p ¼ 0:8, � ¼ 0:9; (d) p ¼ 0:8, � ¼ 0:1.

FIG. 6 (color online). Existence of an optimal coupling:
(2) Simulation results for � ¼ 10, N1 ¼ 100, N2 ¼ 20, and
p values: 0 (purple dots), and 0.8 (red inverted triangles) (only
two values of p are shown to ensure the lines of the best fit can
be seen clearly). (b) Minima of quadratic best-fit curves for
different values of p. We obtain p� ’ 0:32 using a straight-line
approximation between the two closest points, above and below,
�� ¼ 1. (The error bars shown are those of the closest data point
to the minimum of the best-fit curve.)
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