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Using the susceptible-infected-susceptible model on unweighted and weighted networks, we consider

the disease localization phenomenon. In contrast to the well-recognized point of view that diseases infect a

finite fraction of vertices right above the epidemic threshold, we show that diseases can be localized on a

finite number of vertices, where hubs and edges with large weights are centers of localization. Our results

follow from the analysis of standard models of networks and empirical data for real-world networks.
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A survey of infectious diseases reveals that before an
outbreak, often, if not typically, a disease is localized
within a small group of individuals. Changes in environ-
mental conditions or increase in the frequency of external
contacts result in an epidemic outbreak. In this Letter,
we propose an approach that enables us to describe
quantitatively this important localization-delocalization
phenomenon. Our approach is based on the susceptible-
infected-susceptible (SIS) model [1,2] of spreading of
diseases in weighted and unweighted networks, where
the weights of edges encode frequency of contacts between
vertices. It is widely accepted that in uncorrelated
networks, the epidemic threshold �c of the infection rate
� is �MF ¼ hqi=hq2i, where hqi and hq2i are the first and
second moments of the degree distribution [2]. So in net-
works with a finite hq2i, the threshold should be nonzero,
while it is zero if hq2i diverges. One should stress, however,
that all these well-known results were obtained only
within a mean-field theory, actually within an annealed
network approximation in which a random network is
substituted for its fully connected weighted counterpart
[2]. Contrastingly, one can show exactly for an arbitrary
graph that �c is actually determined by the largest eigen-
value �1 of the adjacency matrix Aij of the graph, and

�c ¼ 1=�1 < �MF [3–11]. For uncorrelated networks, in
particular, scale-free networks with the degree exponent
� > 2:5, it was found that �1 is determined by the maxi-
mum degree qmax, �1 / ffiffiffiffiffiffiffiffiffiffi

qmax
p

[3–5]. Then, if in the

infinite size limit, qmax tends to infinity, as, e.g., in the
Erdős–Rényi graphs, this leads to the amazing conclusion
that the epidemic threshold is absent even in (infinite)
networks with a finite hq2i, in contrast to the mean-field
result. The conclusion that the epidemic threshold may be
absent even in the networks with rapidly decaying degree
distributions was confirmed in numerical simulations per-
formed in Ref. [6].

In this Letter, we develop a spectral approach to the
SIS model on complex networks. We show that the

contradiction between the mean-field approximation and
the exact result can be resolved if we take into account
localization of diseases. It turns out that, in contrast to the
mean field theory, in which a finite fraction of vertices are
infected at � > �c, there are actually two scenarios of the
spreading of diseases. If �1 corresponds to a localized
eigenstate, then, at � right above �c ¼ 1=�1, disease is
mainly localized on a finite number of vertices; i.e., the
fraction of infected vertices is negligibly small in large
networks. With further increase of �, the disease gradually
infects more and more vertices until it will infect a finite
fraction of vertices. In the second scenario,�1 corresponds
to a delocalized state. Then already at ��1 � 1 � 1, the
disease infects a finite fraction of vertices. Analyzing net-
work models and real-world networks, we show that hubs,
edges with large weights, and other dense subgraphs can be
centers of localization.
We consider the standard SIS model of disease spread-

ing in a complex network of size N having adjacency
matrix with arbitrary entries Aij � 0. Infected vertices

become susceptible with unit rate, and each susceptible
vertex becomes infected by its infective neighbor with the
infection rate �. Neglecting correlations between infected
and susceptible vertices, the probability �iðtÞ that vertex i
is infected at time t is described by the evolution equation

d�iðtÞ
dt

¼ ��iðtÞ þ �½1� �iðtÞ�
XN

j¼1

Aij�jðtÞ: (1)

In the steady state, at t ! 1, the probability �i � �ið1Þ is
determined by a nonlinear equation,

�i ¼
�
P

j Aij�j

1þ �
P

j Aij�j

; (2)

which has a nonzero solution �i > 0 if � is larger than the
so-called epidemic threshold �c. In this case, the prevalence
� � PN

i¼1 �i=N is nonzero.
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Spectral approach.—To solve the SIS model, we use

the spectral properties of the adjacency matrix Â. The
eigenvalues � and the corresponding eigenvectors f with

components fi are solutions of the equation �f ¼ Âf .

Since the matrix Â is real and symmetric, its N eigenvec-
tors fð�Þ (�max � �1 � �2 � . . . �N) form a complete
orthonormal basis. According to the Perron–Frobenius
theorem, the largest eigenvalue �1 and the corresponding
principal eigenvector fð�1Þ of a real non-negative sym-
metric matrix are non-negative [12]. The probabilities �i

can be written as a linear superposition,

�i ¼
X
�

cð�Þfið�Þ: (3)

The coefficients cð�Þ are the projections of the vector � on
fð�Þ. Substituting Eq. (3) into Eq. (2), we obtain

cð�Þ ¼ �
X
�0
�0cð�0ÞX

N

i¼1

fið�Þfið�0Þ
1þ �

P
~�
~�cð~�Þfið~�Þ : (4)

In order to find the epidemic threshold �c and �ð�Þ near �c,
it is enough to take into account only the principal eigen-
vector fð�1Þ in Eqs. (3) and (4), i.e., �i � cð�1Þfið�1Þ.
Solving Eq. (4), with respect to cð�1Þ, gives �c ¼ 1=�1.
At � � �c in the first order in � � ��1 � 1 � 1, we find
� � �1�, where the coefficient �1 is

�1 ¼
XN

i¼1

fið�1Þ=½N
XN

i¼1

f3i ð�1Þ�: (5)

This expression is exact if there is a gap between �1 and
�2 (see also Ref. [13]). Thus, at � � 1, � is determined by
the principal eigenvector. The contribution of other eigen-
vectors are of the order of �2. Considering the two largest
eigenvalues in Eq. (4), �1 and �2, and their eigenvectors,
we obtain �ð�Þ � �1�þ �2�

2 and so on.
The usual point of view is that �1 is of the order ofOð1Þ,

and so a finite fraction of vertices is infected right above
�c. To learn if another behavior is possible, we study
whether �1 corresponds to a localized or delocalized state.
We use the inverse participation ratio

IPR ð�Þ � XN

i¼1

f4i ð�Þ: (6)

If, in the limit N ! 1, IPRð�Þ is of the order ofOð1Þ, then
the eigenvector fð�Þ is localized. If IPRð�Þ ! 0 then this
state is delocalized. For a localized fð�Þ, the components
fið�Þ are of the order of Oð1Þ only at few vertices. For a

delocalized fð�Þ, we usually have fið�Þ�Oð1= ffiffiffiffi
N

p Þ�1.
From Eq. (5), it follows that if the principal eigenvector
fð�1Þ is localized, then �1 �Oð1=NÞ and so � � �1��
Oð1=NÞ. In this case, above �c the disease is localized on a
finite number N� of vertices. If fð�1Þ is delocalized, then
� is of the order of Oð1Þ, and the disease infects a finite
fraction of vertices right above �c. These two contrasting

scenarios are shown in Fig. 1 for the SIS model on the
karate-club network [14] and the weighted collaboration
networks of scientists posting preprints on the astrophysics
archive at arXiv.org, 1995–1999, and the condensed matter
archive at January 1, 1995—March 31, 2005 [15]. The
astro-ph and karate-club nets have delocalized principal
eigenstates while the cond-mat-2005 net has a localized
principal eigenstate. A numerical solution of Eq. (2) gives
�1 ¼ 1:8� 10�3 for the astro-ph net and smaller �1 ¼
1:5� 10�4 for the cond-mat-2005 net.
One can find �1 and IPRð�1Þ for any unweighted and

weighted graph:

�1 ¼ lim
n!1�1ðnÞ � lim

n!1ðg
ðnÞÂgðnÞÞ=jgðnÞj2; (7)

IPR ð�1Þ ¼ lim
n!1

XN

i¼1

ðgðnÞi Þ4=jgðnÞj4; (8)

where gðnþ1Þ ¼ ÂgðnÞ and gð0Þ is a positive vector. �1ðnÞ
is a lower bound of �1. In unweighted networks, i.e.,

Aij ¼ 0,1, for gð0Þ ¼ 1, the first iteration n ¼ 1 gives

�1ð1Þ ¼ 1

hq2iN
X
i;j

qiAijqj ¼ �MF þ hqi�2r

hq2i ; (9)

where �MF � hq2i=hqi, r is the Pearson coefficient, and
�2 ¼ hq3i=hqi � hq2i2=hqi2 [16,17]. Equation (9) shows
that assortative degree-degree correlations (r > 0) increase
�1 while disassortative correlations (r < 0) decrease �1.
The first iteration also gives the mean-field result IPR ¼
hq4i=½Nhq2i2� �Oð1=NÞ. A few iterations already give
good approximations for �1 and IPR if the principal
eigenstate is delocalized but more iterations are needed if
this eigenstate is localized.
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FIG. 1 (color online). Prevalence � versus the infection rate �
in real networks. (a) astro-phys (upper line) and cond-mat-2005
(lower line) weighted networks [from Eq. (2)]. The eigenstate�1

is localized in the cond-mat-2005 network and delocalized in the
astro-phys and karate-club networks. (b) Karate-club network.
The lower curve accounts for only the eigenstate �1 in Eq. (4).
Accounting for eigenstates �1 and �2, we find the higher curve
and so on. The most upper curve is the exact �.
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Bethe lattice.—To find possible centers of localization of
�1, we use Bethe lattices as simple but representative
examples of networks. The adjacency matrix of an un-
weighted regular Bethe lattice in Fig. 2(a) with vertices
of degree k has the largest eigenvalue �1 ¼ k with a

delocalized eigenvector fið�1Þ ¼ N�1=2. Let us introduce
a hub of degree q > k connected to the neighbors by edges
with a weight w � 1 [see Fig. 2(b)]. The other edges have
weight 1. We look for such a solution f of the equation

�f ¼ Âf that has a maximum component f0ð�1Þ at the
hub and exponentially decreases with increasing distance n
from the hub, fið�1Þ ¼ fnð�1Þ / 1=an. We find

�1 ¼ qw2=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qw2 � B

q
; (10)

IPR ð�1Þ ¼ f40ð�1Þ½1þ qw4=ða4 � BÞ�; (11)

f0ð�1Þ ¼ ½ðqw2=2� BÞ=ðqw2 � BÞ�1=2; (12)

fnð�1Þ ¼ wf0ð�1Þ=an: (13)

Here, B � k� 1 is the branching coefficient of the graph,

a � ðqw2 � BÞ1=2. Due to the exponential decay, IPR is
finite, so this eigenstate is localized. In the limit qw2 	 B,
we have IPR ! ð1þ 1=qÞ=4. This solution gives the maxi-
mum eigenvalue if�1 > k. This condition can bewritten in
the form q > qloc � ðB2 þ BÞ=w2. The second eigenstate

with �2 ¼ k and fið�2Þ � N�1=2 is delocalized.
Now, we consider a Bethe lattice with two hubs of

degrees q1 and q2 connected by an edge with weight
w � 1 [see Fig. 2(c)]. Other edges haveweight 1. As above,
we look for an eigenvector f that exponentially decays from
these hubs. We find that there are two localized eigenstates
with eigenvalues �1 and �2 above �3 ¼ k,

�1ð2Þ ¼a
þB=a
;

a2
¼1

2
ðQ1þQ2þw2Þ
1

2
½ðQ1þQ2þw2Þ2�4Q1Q2�1=2;

�2
1ða2
þQ1Þþ�2

2ða2
þQ2Þ¼a2
�B;

IPRð�1ð2ÞÞ¼ ½�4
1ða4
þQ1Þþ�4

2ða4
þQ2Þ�=ða4
�BÞ:
(14)

The signs 
 correspond to �1 and �2, respectively, and
Q1ð2Þ � q1ð2Þ � B� 1. The components fi decrease expo-
nentially as �1ð2Þ=an
 with increasing distance n from the

hubs 1 and 2.�1 and�2 are the components of f at the hubs
1 and 2. Their ratio is �2=�1 ¼ ða2
 �Q1Þ=ðwa
Þ. The
criterion for localization is �1, �2 > k. If q1¼q2 and

w 	 1, then �1 ¼ �2 ! 1=
ffiffiffi
2

p
and IPRð�1Þ reaches the

maximum value 0.5 that means localization on two hubs.
In general, �1 can be localized in a larger cluster.
Scale-free networks.—To study the appearance and

properties of localized eigenstates in uncorrelated complex
networks, we use the static model [18] that generates
unweighted scale-free networks with degree distribution
PðqÞ / Cq�� at q 	 1. Using software OCTAVE, for each
realization of a random network of size N with mean
degree hqi and � ¼ 4, we calculated eigenvalues, eigen-
vectors, and IPRð�Þ of the adjacency matrix. In networks
of size N ¼ 105, we found that several (typically, from one
to three for different realizations) eigenstates appear
above the upper delocalized eigenstate. These states are
localized at hubs and their properties are described well
by Eqs. (10)–(13) with w ¼ 1 if the branching coefficient
B in these equations is replaced by the averaged branching
coefficient B ¼ hq2i=hqi � 1. We observed that in these
scale-free graphs, the upper delocalized eigenstate �d is
slightly above the mean-field value �MF ¼ hq2i=hqi. The
maximum degree qmax fluctuates from realization to real-
ization. Localization of the principal eigenstate at a vertex
with degree qmax occurs if

�1 ¼ qmax=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qmax � B

p � �d: (15)

The equality, here, gives the threshold degree qloc. In
realizations with qmax < qloc, the principal eigenvector is
delocalized and �1 ¼ �d. For N ¼ 105, hqi ¼ 10, and
� ¼ 4, our numerical calculations give hq2i=hqi � 14:1
and �d � 15. According to Eq. (15), a localized state
appears above �d if qmax is larger than qloc � 214. Since
the average value of qmax depends on N, at small N, the
probability to generate a graph with qmax > qloc is small
[19]. Only large graphs can have a localized principal
eigenstate. The criterion [Eq. (15)] is not satisfied at
� � 5=2 because �d becomes larger than the eigenvalue
� � ffiffiffiffiffiffiffiffiffiffi

qmax
p

of a state localized at the vertex with qmax.

Indeed, assuming�d � �MF, we find�d / q3��
max >

ffiffiffiffiffiffiffiffiffiffi
qmax

p
at qmax 	 1 when � � 5=2. Hence, the largest eigenstate
is delocalized and �1 ¼ �d � �MF in agreement with
Refs. [4,6]. Thus, in the case of uncorrelated random
graphs of sufficiently large size, the principal eigenvector
is localized if � > 5=2, which includes the Erdős–Rényi
graphs, and delocalized if 2< � � 5=2. Figure 3 repre-
sents the results of our numerical solution of Eq. (4) for the
SIS model on one typical realization of the scale-free net-
work. The principal eigenvector is localized at the hub with
qmax ¼ 323. Equations (10), (13), and (5) give �1¼18:35,
IPR ¼ 0:23, and�1 ’ 1:4� 10�3. These values agree well

FIG. 2 (color online). (a) Regular Bethe lattice with degree
k ¼ 3. (b) Bethe lattice with one hub of degree q > k. This hub
is connected to neighbors by edges having the same weight
w � 1 (red or gray lines). (c) Bethe lattice with two vertices
of degrees q1 and q2 connected by an edge with a weight w � 1
(red or gray line).
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with the measured values �1 ¼ 18:47, IPR¼0:21, and
�1 ’ 1:7� 10�3. The eigenvector with �2 is localized at
the second largest hub with q ¼ 254. The third eigenvector
with �3 � 15:3 is delocalized. The first two eigenstates
allow us to describe �ð�Þ close to �c ¼ 1=�1. Accounting
for the delocalized eigenstate �3 gives better results in a
broader range of � (see Fig. 3).

Real networks.—The largest eigenvalue �1, IPRð�1Þ,
and other parameters of a few weighted and unweighted
real-world networks are given in Table I. Note first, that in
all of these unweighted real networks the inverse partici-
pation ratio IPRð�1Þ is small, that evidences a delocalized
�1. We suggest that localization does not occur because
the localization threshold qloc from the criterion Eq. (15)
exceeds qmax. Second, in unweighted networks, �1 differs
strongly from the mean-field value �MF ¼ hq2i=hqi. �1 is
larger than �MF in networks with assortative mixing
(cond-mat 2005, hep-th, and astro-ph networks) while �1

is smaller than�MF in disassortative networks (karate-club
network). Qualitatively, this agrees with Eq. (9). A similar
observation was made in Refs. [9,11]. Table I shows that

in contrast to the unweighted hep-th and cond-mat-2005
networks, their weighted versions have a localized princi-
pal eigenvector with a large IPR. Localization occurs at
vertices linked by edges with a large weight. In the cond-
mat-2005 network, localization occurs at two vertices of
degrees 37 and 28 connected by an edge with weight 34.3
that is much larger than the average weight w ¼ 0:51. In
this case, Eq. (14) gives�1 � 34:5 and IPR � 0:49. In the
hep-th network, the strong edge has weight 34 larger than
w ¼ 0:97 and connects two vertices of degrees 34 and 33.
Using Eq. (14), we find �1 � 35 and IPR � 0:47 in agree-
ment with the data in Table I. The components of the
principal eigenvectors in these networks decay exponen-
tially with distance from the strong edges in agreement
with Eq. (14). In the astro-ph weighted network, none of
the edges satisfies the localization criterion. Two scenarios
of behavior of the prevalence �ð�Þ in weighted networks
with localized and delocalized �1 are shown in Fig. 1(a).
Although above we considered only localization centers
with one or two vertices, note that a disease may also be
localized on larger finite clusters.
It was concluded in Refs. [9,11] that in unweighted

networks a disease first survives inside the higher
k-cores. By definition, k-cores are subgraphs containing
a finite fraction of a network, and so these two works
actually discussed the delocalized state of disease. The
principal difference of the present work from Refs. [9,11]
is that we consider situations in which a disease takes in a
finite number of vertices and not a finite fraction both in
unweighted and weighted networks.
In conclusion, based on a spectral approach to the SIS

model, we showed that if the principal eigenvector of the
adjacency matrix of a network is localized, then at the
infection rate � right above the threshold 1=�1, the disease
is mainly localized on a finite number of vertices.
Importantly, a strict epidemic threshold in this case is ac-
tually absent, and a real epidemic affecting a finite fraction
of vertices occurs after a smooth crossover, at higher values
of �. On the other hand, if the principal eigenvector is
delocalized, the epidemic occurs in the whole region above
�c ¼ 1=�1. We suggest that further investigations of
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FIG. 3 (color online). (a) Prevalence � versus � in a scale-free
network of 105 vertices generated by the static model with � ¼ 4,
hqi¼10. The lowest curve accounts for only the principal eigen-
state in Eq. (4), the next one accounts �1 and �2, and so on.
(b) Zoom of the prevalence at � near �c ¼ 1=�1.

TABLE I. Characteristics of real-world networks. N is size, � is the degree distribution exponent, qmax is the maximum degree, qloc
is the localization threshold found from Eq. (15),�1 is the largest eigenvalue, and�1ð1Þ is its lower bound, Eq. (9), respectively. A and
D stand for assortative and disassortative mixing. Two last columns represent weighted networks.

�1 IPRð�1Þ
Network N � qmax qloc hq2i=hqi mixing �1 �1ð1Þ IPRð�1Þ weighted

cond-mat 2005 [15] 40421 3.0 278 2604 27.35 A 51.29 35.205 0.0081 47.63 0.3415

hep-th [15] 8361 50 521 8.687 A 23 10.632 0.0417 40.52 0.3531

astro-ph [15] 16706 360 5415 44.92 A 73.89 56.287 0.005 33.7575 0.0525

power grid [20] 4941 exponential 19 53 3.87 7.483 3.9 0.041

fp5 [21] 27985 2.2 2942 38610 211.0 197.03 176.3 0.0035

CAIDA (router-internet) [22] 192244 2.7 1071 11947 37.89 109.5 42.9 0.010

karate-club [14] 34 17 37 7.77 D 6.72 6.01 0.073
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real-world networks will give many new examples of
disease localization-delocalization phenomena.
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R. Pastor-Satorras, and A. Vespignani, Phys. Rev. Lett. 90,
028701 (2003).

[3] Y. Wang, D. Chakrabarti, C. Wang, and C. Faloutsos, in
22nd International Symposium on Reliable Distribute
Systems (SRDS03) (IEEE Computer Society, Los
Alamitos, 2003), p. 25.

[4] F. Chung, L. Lu, and V. Vu, Proc. Natl. Acad. Sci. U.S.A.
100, 6313 (2003).

[5] S. N. Dorogovtsev, A.V. Goltsev, J. F. F. Mendes, A. N.
Samukhin, Phys. Rev. E 68, 046109 (2003).

[6] C. Castellano and R. Pastor-Satorras, Phys. Rev. Lett. 105,
218701 (2010).
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