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The dynamics of the multilamellar vesicle (MLV) is analyzed theoretically, where membrane interac-

tion squeezes the solvent to flow between the neighboring membranes. With the applied affine shear, the

dynamic free energy density of the MLV develops a minima, which selects the MLV size. The model

predicts a terminal shear rate, below which the metastable MLVexists. The scaling relations for the MLV

size and the terminal shear are both consistent with the experiments.
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Multilamellar vesicles (MLVs) have an onionlike
structure, where the concentric bilayer vesicles are nested
to form a multilayer vesicle. Its space-dividing structure
leads to many applications, for example, the microreactor
[1] or the container for smooth drug release processes [2].
Such MLV structures can arise as a thermodynamic stable
phase [3,4], where the space is packed delicately by poly-
disperse MLVs to reduce their deformation. Alternatively,
metastable MLVs can be produced from lamellar phases
by external forcing. Several methods have been reported
to produce metastable MLVs, including the dry lipid
hydration, the sonication method [5], the electrode method,
and the flow method. While a simple pressure-driven flow
through narrow pores can generate MLVs, uniform shear
flows, surprisingly, have been reported to induce a sharp
transition from the lamellar phase to MLVs [6–11], where
the (metastable) MLVs have a monodisperse size distribu-
tion. The shear flow method is successfully applied to both
surfactant solutions and copolymer-homopolymer mix-
tures [12,13], and so it seems to be a generic phenomena.

The shear flow—induced transition process has such a
narrow MLV size distribution that it has generated a lot of
interest in understanding its mechanism. Theoretical studies
[14–16] show that as the shear rate gradually increases, the
lamellar will lose its stability, and either the direction or the
layer fluctuation will be affected by shear. At much higher
shear rates, stability analysis [17] shows that the undulation
instability along the velocity direction will disappear, and
the lamellar will become stable again. Therefore, in the
intermediate shear rates, the unstable lamellar reorganizes
itself into nontrivial structures. Scattering experiments
reveal that the unstable lamellar first organizes itself into
multilayer cylinders, which later become the MLVs as the
steady state [18,19].

To understand the relation between theMLV size and the
steady-state shear rate, many theories have been inspired
by the oil droplet breakup problem pioneered by Taylor
[6,20–23]. In shear flow, small droplets merge, and the
droplet will break if the viscous force on it is stronger
than the elastic force. When the droplets reach their steady-
state size, one can obtain the scaling relation for the droplet

size by balancing the viscous force with the elastic force. In
the oil-water system, the elastic force comes from the
surface tension and the curvature. For the MLVs, the static
calculation of a slightly deformedMLV [24] suggests that an
effective surface tension can be defined. Using the effective
surface tension, Taylor’s argument can be applied, which
gives the MLV size—shear rate scaling relation [6,21–23].
Since the general idea is not specific enough, several differ-
ent theories exist.
In an early review of shear-induced MLVs [11],

Richtering pointed out that all the reported cases are
multicomponent (lyotropic) systems. Furthermore, Kato
et al. [25] found that when the amount of the solvent is
too small, MLVs do not form. We believe that the multi-
component feature is significant. The force balance picture
mentioned above, however, does not distinguish single- or
multicomponent smectics.
Compared with single-component smectics, multicompo-

nent smectics have at least one more hydrodynamic slow
mode, arising from the additional conservation law of the
second component [26]. In the surfactant system where
MLVs form, this mode has the slowest relaxation rate. The
decay rate was calculated by Brochard and de Gennes [27]
(called the ‘‘slip mode’’), and measured by dynamic scatter-
ing [26] (as the ‘‘baroclinic mode’’). MLVs have finite sizes;
therefore, this mode is no longer hydrodynamic in the strict
sense. Nonetheless, its slow rate suggests that it may have an
important role to play in the mechanism of MLV formation.
In this Letter, we study the slow mode of a MLV, using a

model similar to that in Ref. [28] for the flat lamellar.
When a shear is applied, we find that the dynamic free
energy density develops a minima, which selects the MLV
size. We are able to derive detailed scaling prediction for
the MLV size, where the dependence on the smectic repeat
distance d is included. The predicted MLV size has the
correct scalings with the shear rate and concentration.
Above a terminal shear rate, the minima disappears, in-
dicating that the MLV becomes unstable. Our terminal
shear rate expression is also consistent with the experi-
mental phase boundary. These suggest that the slow mode
is essential for the formation of MLVs.
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We consider a MLV consisting of N nested bilayer
vesicles. The bilayer thickness is assumed to be small.
The equilibrium surface of the nth layer (with 1�n�N)
is a sphere with radius rn ¼ nd. To describe the relaxation
of small fluctuations, we introduce the layer normal dis-
placement un of the nth layer, and its dimensionless surface
concentration �n, which becomes unity at equilibrium. We
use the free energy [27,29]

F ¼
Z rN

dr
Z

dA
�Bð@ruÞ2

2

þ XN
n¼1

Z
dA

�
�

2
H2

n þ ESð�n � 1Þ2
2

�
(1)

where Hn ¼ 2=rn � ðL̂2unÞ=r2n is (twice) the mean curva-

ture of the bilayer; L̂2 is the angular momentum operator
without @. The quantities un, Hn, and �n are functions of
the polar angles �,’. The first term describes the interaction
between the neighboring layers, where �B is the compression
modulus. The second term gives the bending energy [29].
The third term gives the stretching energy [29] from the
surface concentration variation. For simplicity, the small
coupling between the surface concentration and the layer
dilation is neglected [26,30]. Note that we use the surface
concentration as the dynamic variable, instead of the
concentration. The large stretching modulus ensures a
fast-relaxing surface concentration. Therefore �n is more
suitable for the adiabatic approximation [31].

The solvent surrounding the bilayers is described by the
Stokes equation, with the solvent viscosity �

�rpþ �r2v ¼ 0; (2)

and the incompressible constraintr � v ¼ 0. At the bilayers,
we assume the nonslip boundary condition.

We neglect the solvent permeation through the bilayers.
For the radial velocity at rn, we write

@tun þ v? � r?un ¼ vr (3)

The dynamical equation for surface concentration is

@t�n þ v? � r?�n ¼ � 2vr

rn
�n � ðr? � v?Þ�n (4)

The sum of the forces on each bilayer vanishes. The normal
force balance reads

� �F

�un
þ �rrðrþn Þ � �rrðr�n Þ ¼ 0 (5)

where �rr ¼ �pþ 2�@rvr, and r�n ¼ lim�!0rn � j�j.
The tangential force balance on the bilayer is

� �F

�xn

þ �r?ðrþn Þ � �r?ðr�n Þ ¼ 0 (6)

where xn is the tangential (2D) displacement vector. The
(2D) stress �r? has the standard stress components.

For the boundary conditions, in this study, we consider
the MLV to be densely packed with its neighbors. In the
spherical unit cell approximation, the boundary is a spherical
cell with radius rN þ d.
We first consider the relaxation shapewithout the external

shear. The homogeneous Eq. (5) can be put into a matrix
form in N dimension

E � uþR � @tu ¼ 0 (7)

where u ¼ ðu1; . . . ; uNÞ. The matrixE contains the bending
force and the �B term. The stretching force and the stress
�rr consist of the matrix R. We consider the limit of the
large stretching modulus, ES ! 1 (hence �n ! 1), so that
Eq. (4) becomes the surface incompressibility condition
2vr=rn þr? � v? ¼ 0. The flow field obeys three con-
straints, that of bulk incompressibility, and of surface in-
compressibility at the two surfaces rn�1 and rn. The
Poiseuille flow between the two neighboring layers is
fully determined by the layer normal velocities vrðrn�1Þ ¼
@tun�1 and vrðrnÞ ¼ @tun. Stress components can be calcu-
lated from the fluid velocity and pressure. The stretching
force becomes a Lagrange multiplier, which is determined
from �r? through Eq. (6).
The relaxation spectrum resembles that of the flat smectics.

As shown in Fig. 1, the numerical decay rates agree with the
baroclinic mode dispersion relation

�b ¼ � �B
lðlþ 1Þ

r2n
(8)

where� ¼ d2=12� is the Brochard–de Gennes mobility for
the ‘‘slipmode’’ [27]. The baroclinicmode dispersion is very
accurate except for the high-frequencymodes near the center
of the MLV, where the modes acquire the undulation
character. At low l, the relaxation modes are predominant
baroclinic modes. One can note that, at l ¼ 2, the decay rate
�b for rN is very close to the MLV formation shear rate [32].
This suggests that the MLV size might be limited by the
criterion that all the internal relaxations must be faster than
the applied shear rate.
We now consider the MLV with the external shear flow.

The velocity of a simple shear is v ¼ �s � r. The velocity
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FIG. 1. The ratio of the numerical relaxation rates � and the
approximated expression �b. For the majority of the slow modes,
� ¼ �b. The solid line has l ¼ 2. The dashed line is for l ¼ 8.
Both curves have 	=d ¼ 1:9 and N ¼ 200.
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gradient tensor is �s ¼ _
 x̂ ŷ , where x̂ and ŷ are the unit
vectors along the x and y directions.

On a MLV, the torque produced by the applied shear
stress must be balanced by other torques. If all the MLVs
rotate in the same direction, some neighboringMLVs along
the flow direction will shear against each other, so that an
opposite torque arises from such shear stress. A detailed
calculation is beyond the scope of the present work. Below
we will simply assume that the MLV rotates at the rate _
.
In the rotating frame corotated with the MLV, the radial
velocity becomes

vrðr; tÞ ¼
ffiffiffiffiffiffiffi
4�

15

s
_
rðYx

2 sin _
tþ Yy
2 cos _
tÞ (9)

where Yx
2ð�;’Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
45=48�

p
sin2� cos2’ and Yy

2ð�;’Þ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
45=48�

p
sin2� sin2’. In the rotating frame, the layer

displacement now has the inhomogeneous term

E � uþR � @tu ¼ R � vr (10)

where vr evaluated at rn forms the N dimension vector vr.
Equation (10) can be put into a dimensionless form, where
the shear rate is measured by _
0 � 6� �B=d2. The solution
depends only on the dimensionless parameter 	=d. Here

	 � ffiffiffiffiffiffiffiffiffiffi
K= �B

p
is the smectic penetration length, andK ¼ �=d

is the bending modulus. For typical systems, the ratio 	=d
is close to unity.

In Fig. 2, we solve Eq. (10) numerically, and use Eq. (1)
to evaluate the dynamic free energy density f, defined as

fðN; _
Þ � F

4�r3N=3
(11)

which depends on N and _
. In static or at very small shear
rates, the decreasing free energy density agrees with the
static calculation (see Ref. [24]), where the shear modulus

scales as
ffiffiffiffiffiffiffiffi
K �B

p
=rN . For a MLV with N layers, at shear rates

larger than 6� �B=r2N , some of its slow modes cannot follow
the shear rate; therefore, the free energy density increases.
For a given shear rate, the large MLVs are affected, while

the small MLVs remain the same as static; therefore f
develops a minima N�, representing an optimal MLV size
at that shear rate. The optimal size N� decreases as the
shear rate increases. Above a maxima shear rate _
max,
where the optimal MLV size is close to the core size 	,
the free energy loses the minima.
In Fig. 3, we find that the numerical data ofN�, scaled by

a coefficient Cs, form a scaling relation, where

Cs ’ 0:37ð	=dÞ1=4 (12)

between 0:25 � 	=d � 4 with error below 5%. At low

shear rates, we obtain N�=Cs ’ ð _
= _
0Þ�1=2, which agrees
with the experimental findings in Refs. [6,7]. The decay
rate criterion [32] _
 ’ �b is equivalent to set Cs ¼ 1. At
large shear rates to approach _
max, N

� does not scale so
strictly. The curves flatten out near the origin. This arises
because the size preferred by the baroclinic modes is too
close to the MLV core size 	. Interestingly, the experi-
mental data in figure 11 of Ref. [7] also show similar
behavior.
From Eq. (12), the MLV diameter D ¼ 2N�d becomes

D ’ 1:8ð	=dÞ1=4
ffiffiffiffiffiffiffiffi
� �B

q
_
�1=2 ¼ S _
�1=2 (13)

FIG. 2. The dynamic free energy density f for 	=d ¼ 3:65.
From the lowest curve upward, the ratios _
0= _
 are 1:87� 106,
1:87� 105, 6:2� 104, 1:87� 104, 6:2� 103, 1:87� 103, and
187. The upper two curves do not have a minima.
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FIG. 3. The size-shear rate relation. The numerical data are
from 	=d ¼ 0:125, 0.25, 0.7, 1.0, 1.5, 2.0, 3.3, and 3.65.
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FIG. 4. The slope S in Eq. (13) at different volume fractions.
The solid line is a fit with 	=d ¼ 0:7. The dashed line is for
	=d ¼ 1:9. The data are redrawn from figure 30(a) of Ref. [7].
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Our calculation for � does not consider the finite
bilayer thickness �. Using a better expression [26]
� ¼ ðd� �Þ2=12�, and

�B ¼ 9�2

64

ðkBTÞ2
�

d

ðd� �Þ4 ; (14)

one obtains S / kBTð��Þ�1=2ð	dÞ1=4=ðd� �Þ. Here, in
Fig. 4, we plot S using a fit to the measured data [26]
� �B ’ 5:18� 10�11��1ð1=�� 1:25Þ�2 m2 sec�1, where
� ’ 2:4 nm=d is used to convert d to �. In the dilute

lamellar, we recover the theoretical scaling S / d�1=2

in Ref. [7] (assuming 	 / d). At high concentrations, how-

ever, the measured � �B increases much faster than d�1=2.
We find that S correlates well with the measured � �B.

The terminal shear rate ratio _
max=
0 depends on the
parameter 	=d. Between 0:125 � 	=d � 4, within an error
of 10%, we find that _
0= _
max ¼ 172ð	=dÞ2; alternatively,

_
max ¼ 6� �B

ð13:1	Þ2 (15)

In Fig. 5, we show the experimental phase boundary be-
tween the MLV phase and the MLV-lamellar coexisting
region from Ref. [7]. Equation (15) fits the phase boundary
well with 	=d ¼ 1:9. The same value of 	=d, however,
predicts a larger MLV size (dashed line in Fig. 4).
Nevertheless, it is significant that the dynamic phase bound-
ary can be obtained from the equilibrium parameters 	 and
� �B. The phase boundary is calculated here from MLV
stability, whereas Ref. [17] discussed the problem from
the point of (albeit single component) lamellar stability. A
fuller analysis should include both approaches.

In summary, we calculate the baroclinic mode disper-
sion of a MLV. With the affine applied shear, the dynamic
free energy density shows a minima for shear rates below a
maxima shear rate [see Eq. (15)]. The local minima selects
the steady shear MLV size, Eq. (13). Given the equilibrium
parameters � �B and 	=d, our predictions compare reason-
able well with the experiments.
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