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We study the efficiency of self-propelled swimmers at low Reynolds numbers, assuming that the local

energetic cost of maintaining a propulsive surface slip velocity is proportional to the square of that

velocity. We determine numerically the optimal shape of a swimmer such that the total power is minimal

while maintaining the volume and the swimming speed. The resulting shape depends strongly on the

allowed maximum curvature. When sufficient curvature is allowed the optimal swimmer exhibits two

protrusions along the symmetry axis. The results show that prolate swimmers such as Paramecium have an

efficiency that is �20% higher than that of a spherical body, whereas some microorganisms have shapes

that allow even higher efficiency.
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Many microorganisms use cilia or flagella for their
propulsion. Flagella usually have a length that is comparable
with the size of the organism, but cilia are much shorter and
appear in large numbers, typically some thousands. Because
they are short in comparison with the body of the swimmer,
one can separate the length scale of ciliary beating from that
of the fluid flow around the swimmer [1–3]. In this way the
ciliary layer on the surface is replaced by an active surface
slip velocity [4–6]. In other words, the relative fluid velocity
close to the surface is not zero, but has a constant value
determined by the action of cilia. The fluid itself is described
by the Stokes equation.

Besides natural swimmers, a number of artificial
swimmers have been proposed and also fabricated recently.
While some of them use shape changes (often magnetically
actuated) for propulsion [7], there are also a number of
chemiphoretic swimmers [8–10], which can be well
described with the surface slip formalism [5].

The search for the strokes that allow swimmers to main-
tain a certain speed with minimum dissipation has drawn
considerable attention in recent years. Solved problems
include the optimal stroke pattern of Purcell’s three link
swimmer [11], of an ideal elastic flagellum [12], of driven
surface anchored filaments [13], of a shape-changing body
[14], of a two-sphere and a three-sphere swimmer [15],
of a spherical squirmer [16], and of Chlamydomonas’
flagella [17].

We have recently numerically determined the optimal
beating patterns of individual cilia, as well as densely
covered infinite ciliated surfaces [3]. The resulting patterns
have remarkable resemblance with many cilia found in
nature. The stroke consists of a fast, stretched working
stroke and a slower sweeping recovery stroke. The phases
of cilia form metachronal waves. We have also shown how
the ciliary efficiency is related to the swimming efficiency
of a ciliated swimmer, which we assumed to be spherical.
By comparing the theoretical optimum with an efficiency

estimate for Paramecium we found them to differ by no
more than a factor of 2, indicating that microorganisms
have evolved for efficient swimming. This is in contrast
with the opinion that swimming efficiency is not a major
issue at the microscopic scale [18]. In fact, it has been
shown experimentally that Paramecium uses more than
half of its energy for swimming [19].
In this Letter we will go one step further and determine

the optimal shape of the swimmer. For bodies driven by an
external force, the shape with minimum drag was deter-
mined several decades ago by Pironneau [20]. It has the
form of a rugby ball with an angle of 120� at both ends and
a drag coefficient that is 0.954 times that of the sphere with
the same volume [21]. So the gain from shape optimization
of 4.5% is rather modest. We will show that it can be much
bigger in the case of self-propelled swimmers.
The problem is formulated as follows. We are looking

for the shape of the swimmer that is able to maintain a
swimming speed u with minimum dissipation, while hav-
ing a fixed volume V and a minimum allowed curvature
radius rmin. We will see later why it is important to restrict
the maximum curvature. We have previously shown that
the surface density of the power needed to generate a
velocity v above the ciliary layer is given as

dP

dS
¼ v2

�2�c
¼ �

�2L�0c
v2; (1)

where� is the fluid viscosity, L is the length of the cilia, and
�0c is the dimensionless collective efficiency, which can
achieve a maximum value of �0:016 [3]. Apart from the
prefactors, the equation is easy to understand. If the fluid has
the velocity v at a height L above the surface, but velocity 0
at the surface, the dissipated power per unit area is�v2=L in
the case of uniform shear. Of course, any realistic propulsion
mechanism has a significantly higher dissipation. For cilia it
is at least 5 times higher. This equation also reveals that
longer cilia are generally more efficient, but there are other
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limitations such as the bending moment and the power a
cilium can generate.

We therefore have to minimize the integral
H
v2dS for a

constant swimming speed u and volume V. As there is no
benefit in breaking the axial symmetry of the body shape
we restrict ourselves to bodies that are axisymmetric
around the direction of motion. The surface velocity v
also has to be axisymmetric.

We parametrize the shape of the axisymmetric swimmer
as �ðsÞ and zðsÞ. Then the volume of the body is

V ¼
Z zmax

zmin

��2dz: (2)

We describe the fluid using finite boundary elements, spe-
cifically a method of regularized Stokeslets [22], adapted for
axisymmetric bodies. The idea of regularized Stokeslets is
to represent the force a body exerts on the surrounding fluid
as a collection of highly localized forces distributed along its
surface. In the axisymmetric case we replace the localized
forces with N symmetric rings, as shown in Fig. 1. We
denote the radius and position of the ith ring as �i and zi.
The axial and radial components of the force density on the
same ring are fz;i and f�;i. The fluid velocity due to this

force distribution, evaluated at point (�i, 0, zi) is

vi ¼ 1

8��

XN

j¼1

Z 2�

0
S�ð�iêx þ ðzi � zjÞêz � �jê�ð�ÞÞ

� ½f�;jê�ð�Þ þ fz;jêz��jd� (3)

with ê�ð�Þ ¼ êx cos�þ êy sin�. S� is the tensor of a

regularized Stokeslet

S���ðrÞ ¼
���ðr2 þ 2�2Þ þ r�r�

ðr2 þ �2Þ3=2 : (4)

� is a regularization parameter which does not influence the
result if the mesh is sufficiently dense. In our calculation we
used � ¼ 0:1d where d denotes the distance between two
adjacent rings. An analytical solution for all components of
the integral in Eq. (3) is given in Supplemental Material
[23]. It can be written in matrix form as

v�;i ¼
X

�2f�;zg

XN

j¼1

M�;i;�;jF�;j; (5)

where the index � represents the � or z component and
i runs over all rings in the parametrization. We also intro-
duced the forces Fz;i ¼ 2��ifz;i and F�;i ¼ 2��if�;i in a

way that keeps the mobility matrix M symmetric. We next
denote the tangent vector on the surface at point i as t̂i.
The total speed of the fluid at that point is then the sum of
the tangential surface slip velocity and the swimming
velocity u:

v�;i ¼ t̂�;ivt;i þ u��;z: (6)

Combining these two equations gives

F�;i ¼
X

�2f�;zg

XN

j¼1

ðM�1Þ�;i;�;jt̂�;jvt;j þ u
XN

j¼1

ðM�1Þ�;i;z;j:

(7)

The force balance condition on the swimmer,
P

N
i¼1 Fz;i ¼ 0,

finally allows us to express the swimming velocity u with
the local surface slip velocities vt;i:

u ¼ �

P

�2f�;zg

P
N
i;j¼1ðM�1Þz;i;�;jt̂�;jvt;j

P
N
i;j¼1ðM�1Þz;i;z;j

¼: �XN

j¼1

Ajvt;j

(8)

Likewise, the dissipation can be written as P ¼ P
N
j¼1 Bjv

2
t;j

with

Bj ¼ 1

�2�c
2��jd: (9)

Minimization of P while keeping u constant can be
performed using Lagrange multipliers, ð@P=@vt;iÞ �
	ð@u=@vt;iÞ ¼ 0, leading to

vt;i ¼ �	Ai

2Bi

¼ �u
Ai=BiP

N
j¼1 A

2
j=Bj

: (10)

For a given shape of the swimmer, this equation gives us the
optimal distribution of surface velocities to achieve the
swimming speed u with minimal dissipation. The dissipa-
tion itself follows as

P ¼ u2
�XN

i¼1

A2
i

Bi

��1
: (11)

FIG. 1. We parametrize the axisymmetric body as N rings,
each at height zi with radius �i. The fluid velocity at each ring
has the radial component v�;i and the axial component vz;i.
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For a spherical swimmer, the velocity distribution and the
dissipated power can be easily calculated analytically [3]:

vt ¼ 3

2
u sin
 Psphere ¼ 6R2

��c
u2 (12)

In the following we normalize the power relative to the

result for a sphere with the same volume (R ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3V=4�3

p
)

P̂ ¼ P

Psphere

: (13)

We also use a dimensionless value of the minimum curva-
ture radius, r̂min ¼ rmin=R.

In order to obtain the optimal shape, we numerically
optimized the coordinates �i and zi while keeping the
distances between the rings fixed. We performed the opti-
mization by means of the sequential quadratic program-
ming method using the Numerical Algorithms Group
routine E04WDF. The results for several radii of curvature
are shown in Fig. 2. The data are calculated withN ¼ 3201
rings, of which 2� 100 were subject to optimization and
the remaining were interpolated as piecewise Euler spirals
(clothoid segments). The distribution of the propulsion
velocities vt for two solutions is shown in Fig. 3(a). For

the optimal shape we can also determine the flow stream-
lines, which are shown in Fig. 3(b) for two values of r̂min.
Most interestingly, for r̂min & 0:2 the optimal shape

exhibits two protrusions along the symmetry axis.
They bring the benefit of exerting a force on the fluid at
a distant point where the flow is less perturbed. In the
limit r̂min ! 0 the central part becomes increasingly pas-
sive and eventually assumes the shape of Pironneau’s
minimum drag body [20]. Another curious feature is the
appearance of small ripples on the surface for values of
0:1 & r̂min & 0:8. Having a higher driving speed at the
crest of a ripple and lower in the trough slightly increases
the efficiency. But the difference is extremely small—if
we include a small penalty on curvature in the optimiza-
tion to eliminate the ripples, the dissipation increases by
no more than 0.5%. So the effect is completely irrelevant
for microorganisms. We discuss the ripples in more detail
in Supplemental Material [23].
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FIG. 2 (color online). Optimal shapes of bodies with minimum
radius of curvature r̂min ¼ 0:1; . . . ; 1.
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FIG. 3 (color online). (a) Color coded tangential propulsion
velocity vt=u of the optimal optimal swimmer for r̂min ¼ 0:1
(left) and r̂min ¼ 0:5 (right). (b) Streamlines of the same two
swimmers in a body-fixed frame.
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Figure 4 shows the dissipation as a function of the
minimum radius of curvature r̂min. For r̂min ¼ 1 the

swimmer is spherical and we have P̂ ¼ 1 by definition.

Then P̂ reaches a plateau around 0.85 for a wide range of
prolate swimmers. When we allow sufficient curvature,
r̂min & 0:2, the optimal swimmer obtains thin protrusions

at both ends and P̂ can be reduced indefinitely. However,
with the real ciliated swimmer in mind, the situation is
more complex. Strictly speaking Eq. (1) loses its validity
if the protrusions are too thin in comparison with the
ciliary length L. We can incorporate this limitation into
the model by requesting rmin >L. Because the propulsion
efficiency is inversely proportional to the length [Eq. (1)],
making the cilia shorter would actually worsen the overall
efficiency.

We have shown that with a moderate curvature a
surface-propelled swimmer can increase its swimming

efficiency by about 20% relative to a sphere. Ciliated
microorganisms make wide use of it, as the majority of
them has a strongly elongated shape. But it is much
more surprising that the efficiency can be further increased
by growing two protrusions along the symmetry axis.
Although there are certainly other limitations on the body
shape, there are still a number of microorganisms that
have at least one such ciliated protrusion. Remarkable ex-
amples include, e.g., Litonotus and Amphileptus [24,25],
which are shown in Fig. 5. We therefore conclude that not
only do the cilia beat in a way that is very close to the
theoretical optimum [3], but the body shape of many micro-
organisms also assumes a form that enables efficient
propulsion.
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