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The molecular and cellular basis of left-right asymmetry in plant morphogenesis is a fundamental issue

in biology. A rapidly elongating root or hypocotyl of twisting mutants of Arabidopsis thaliana exhibits a

helical growth with a handedness opposite to that of the underlying cortical microtubule arrays in

epidermal cells. However, how such a hierarchical helical order emerges is currently unknown. We

propose a model for investigating macroscopic chiral asymmetry in Arabidopsis mutants. Our elastic

model suggests that the helical pattern observed is a direct consequence of the simultaneous presence of

anisotropic growth and tilting of cortical microtubule arrays. We predict that the root helical pitch angle is

a function of the microtubule helical angle and elastic moduli of the tissues. The proposed model is

versatile and is potentially important for other biological systems ranging from protein fibrous structures

to tree trunks.
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Helical growth is often found in plants with twining
tendrils and spiral order of leaves, petals, or florets. For
many years, the molecular and cellular basis of left-right
asymmetry as well as the potential importance of this
asymmetry in biological functions has been a fundamental
issue in biological sciences. In general, plant shape and
movement are the consequences of directional cell expan-
sion resulting from force balance between turgor pressure
and cell wall tension [1–4]. Therefore, the spatial distribu-
tion of wall microfibrils determines the polarity of cell
expansion and the resulting morphogenesis. A recent ex-
periment has shown that cortical microtubules serve as a
cytoplasmic template for microfibril orientation [5], con-
firming that membrane-assisted cortical microtubules di-
rect cellulose microfibril alignment [6,7].

The twisting mutants of Arabidopsis thaliana provide an
ideal system for studying the relationship between micro-
tubule organization and the chirality in organ growth (see
Fig. 1) [8]. In wild-type plants, rapidly expanding axial
organs such as roots and hypocotyls maintain straight
expansion. The microtubule array of root cells is aligned
transverse to the primary growth axis, and it appears as a
stack of ringlike bundles. In contrast, the growth direction
of the epidermal cell files in the twisting phenotype is
continuously tilted either to the right or left (see Fig. 1),
which involves an oblique microtubule array that shows
helical ordering. Interestingly, a strong correlation has
been experimentally established between chirality in organ
growth and alignment of the helical microtubule array:
right-handed helical growth mutants possess left-handed
microtubule arrays, whereas left-handed mutants possess
right-handed arrays [8–11]. This remarkably simple rela-
tionship implies an underlying mechanical basis of the
macroscopic left-right asymmetry in Arabidopsis twisting
mutants, which is, however, currently unknown. In a bio-
logical model proposed in Ref. [9], organ twisting has been

attributed to differences in cell elongation between inner
and outer layers, but the mechanism of chiral selection has
not been explained by this model [8].
In this Letter, we present a linear elasticity theory to

investigate the mechanical basis underlying the hierarch-
ical helical order in Arabidopsis mutants. We propose a
simplistic model that relies on the fundamental assumption
that plant organ morphology is governed by mechanical
stresses generated by helical growth at a single-cell level
[12]. In particular, we consider that each epidermal cell
exhibits helical growth because of the tilted alignment of
wall microfibrils. At the organ level, however, an individ-
ual cell cannot rotate freely about its axis in order to
maintain the structure of the organ. The elasticity and
long-term plasticity of the organ enable the cell files to
generate torsion about the root primary axis to partially
relieve these growth-induced stresses. Consequently, the

FIG. 1 (color online). Root epidermis and flower petals of
Arabidopsis thaliana: wild-type (center), left-handed mutant
(left panel), and right-handed mutant (right panel). Image cour-
tesy Takashi Hashimoto.
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helical growth at the single-cell level organizes the growth
of the organ in one coherent direction owing to long-range
elasticity. This scenario also provides a natural explanation
for the well-established chiral relationship described
above. Our calculations predict how the helical angle
varies with the microtubule helical angle and the ratio of
the elastic moduli of inner and outer cell layers.

Similar to other systems that exhibit helical growth, an
elongating cylindrical rod generates twist when the growth
direction is tilted from its primary axis [13,14]. We have
not considered the possible residual stress that is generated
during growth [15–17] and have focused only on the
growth kinematics of epidermal cells. Given that the mi-
crotubules direct the alignment of the cellulose microfi-
brils, the growth direction of the cell wall is transverse to
the microtubule array. In Fig. 2, the helical ribbon repre-
sents the cortical microtubule array, and the solid violet
circles represent the trajectory of a labeled material point.
When the microtubules align to form regular helices, the
trajectory of the material point should also be a helical line
with opposite handedness.

The growth of cells in Arabidopsis roots is highly aniso-
tropic. Once the cells leave the cell division zone, no appre-
ciable radial expansion occurs, and individual cell growth at
a typical growth velocity��m=min is completed in a few
hours [18]. We have thus modeled these cells as a cylindrical
rod that grows in length but maintains a constant radius r0.
Because the elongation zone is much larger than the radius,
we assume that spatially uniform growth occurs in the axial
direction. By considering the manner in which a given point
on the rod with coordinates (�, ’, s) is convected during a
short period dt owing to growth, we can obtain the growth
kinematic equations _� ¼ 0, _’¼ð�1��2Þðs=�Þsin�cos�,
and _s ¼ ð�1sin

2�þ �2cos
2�Þs, where the dot represents

the time derivative and �1 and �2 are the growth rates in
the two principal directions (see Fig. 2). By solving these
equations, we can determine the growth mode of a single
epidermal cell as follows:

� ¼ r0; (1)

’ðtÞ ¼ �1 � �2

�k
sin� cos�

s0
r0

ðe�kt � 1Þ; (2)

sðtÞ ¼ s0e
�kt; (3)

where we have defined the axial growth rate �k ¼
�1sin

2�þ �2cos
2�, which is a combination of the two

growth rates. The arc length grows exponentially with
time, and the cross section of the cylinder rotates with an
angular velocity that increases with arc length.
For a short time regime characterized by �kt � 1,

we found the linear increase in rotating angle ’ðs0; tÞ �
ð�1 � �2Þtðs0=r0Þ sin� cos�, which agrees with the
result provided by Schulgasser and Wiztum without deri-
vation [19]. They originally considered a spontaneous
rotation of a cylindrical tube undergoing thermal expan-
sion. Equation (2) is thus a generalization of their result to
the one applicable to a growing elastic cylinder. An im-
portant result obtained from Eq. (2) is the kinematics over
long time scales. For �kt � 1, the rotation angle of the

material (originally at s0 at t ¼ 0) with respect to that at
s ¼ 0 increases exponentially with time but linearly with s,
i.e., ’ðs0; tÞ � �0s0e

�kt ¼ �0s. The growth-induced twist
�0 is found to be uniform along the rod and is given by

�0ð�; �Þ ¼ � 1

r0

� sin2�

1þ � cos2�
; (4)

which depends only on the microtubule helical angle � and
the ratio of the growth rates � ¼ �ð�1 � �2Þ=ð�1 þ �2Þ.
It should be noted that the same exponential growth model
was previously used to describe the supercoiling instability
of growing Bacillus subtilis fibers [20], where �0 denoted a
certain constant parameter. Equation (4) helps elucidate
how �0 depends on the growth rate and cell wall anisotropy
and can be applied to a wide variety of growing biological
filaments.
The thick inextensible epidermal cell layer sheathes

relatively more compliant inner tissues [7]. We have thus
modeled the entire organ as a composite elastic body
consisting of the inner and outer cell layers (see Fig. 3).
The outer layer is a parallel bundle of N identical rods with
an intrinsic twist �0 and total length L. The center lines of
rods, parameterized by their arc length s, are helices
wrapped around a core cylinder of radius R� r0, and we
used a variational approach to determine their equilibrium
shapes, assuming that these rods were closely packed. This
approach is similar to those used in the study of the
mechanics of n-plies, which are relevant to a wide class
of engineering issues such as those experienced for textiles
and wire ropes (e.g., Ref. [21] and references therein). The
n-ply issue related to the central core cylinder has recently
been analyzed by appropriately taking the ply geometry
into account but for a prescribed and constant twist of the

FIG. 2 (color online). Left: Helical growth of a single epider-
mal cell with a right-handed helical microtubule array. The violet
points trace the left-handed twist during growth. Right:
Geometry of the helical growth model described in the main text.
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core cylinder [22]. In the current analysis, the core twist is
induced by the skewing of the outer rods and is determined
self-consistently so that it minimizes the elastic energy of
the entire system.

The center line of the n-th rod has a uniform helical
shape with a fixed (known) radius R and is given
by RnðsÞ ¼ ½R cosc nðsÞ; R sinc nðsÞ; s cos��, where
c nðsÞ ¼ ðsin�=RÞsþ 2�n=N is the equatorial angle in
a plane perpendicular to the long axis of the root growth
[23]. The pitch angle � is shown in Fig. 3(b) and
has plus and minus signs for right- and left-handed
helices, respectively. Taking into account the growth-
induced twist given by Eq. (4), the elastic deformation
energy of the collection of N-rods is expressed as Eout ¼
N
R
L
0 ds½ðA=2Þ�2 þ ðC=2Þð!� �0Þ2�, where � is the cur-

vature, ! is the twist density, and A and C are the
effective bending and twisting moduli, respectively
[21,24]. Because the rigidity of an epidermal cell dom-
inantly arises from its thin tubelike cell wall with a
thickness of h, we use A ¼ �Er30h and C ¼ 2��Er

3
0h,

which are valid for h=r0 � 1 [24,25]. E and �E are the
Young’s modulus and shear modulus of the cell wall,
respectively, and typically, E� GPa [4].

We adopted a standard assumption in which the growth
of the organ is slow enough as compared to the typical
time required to attain mechanical equilibrium [17,26].
Consequently, we considered a quasistatic limit at which
the state of the system can be determined byminimizing the
elastic deformation energy of the root organ E under
the material parameters given by the growth process. Over
a much longer time scale, these parameters change gradu-
ally, leading to so-called plastic deformation (morphoelas-
ticity) [16,27].

By performing the standard frame transformation, we
can express the twist density in terms of the center line
geometry and the axial spinning degree of freedom, which
leads to the expression ! ¼ ðd’=dsÞ þ �. Here, � is
the geometric torsion and d’=ds is termed the excess

twist [28]. If a rod is free to rotate about its axis, the
minimum energy configuration is a straight rod with a
uniform axial twist, i.e., ’ðsÞ ¼ �0s and � ¼ � ¼ 0, which
is the configuration required according to the kinematics
given by Eq. (3). In reality, however, the cells are glued in
order to maintain the structure of the entire organ, thus
preventing an individual cell from rotating about its long
axis. We can treat this organ structure as another geometric
constraint given by

d’=ds ¼ 0 for 0 � s � L: (5)

For a uniform helical configuration, the constant curvature
and torsion are expressed as � ¼ sin2�=R and � ¼
sin� cos�=R, respectively [24,28]. Using the constraint
given by Eq. (5), the elastic deformation energy of the
outer layer is Eout ¼ N

R
L
0 eoutð�Þds, where eoutð�Þ ¼

A=2ðsin4�=R2Þ þ C=2ðsin� cos�=R� �0Þ2.
Growth-induced stress can also be transmitted to the

inner cortex cell layer via extracellular matrices. This
load sharing is termed tissue tension [7,29,30]. See
Fig. 3(b). Thus, the total elastic energy of the organ is
the sum of the inner and outer energies, i.e., E¼EinþEout.
We considered the inner cortex tissues as a uniform elastic
medium with an effective shear modulus �C. As this
medium contains an almost fluid phase (� 75% [4]), we
expect to obtain �C=�E � 1. Further, the cortex cells of
etiolated hypocotyls are experimentally observed to pos-
sess microtubule arrays of mixed polarities, without show-
ing any defined handedness [8,9]. Therefore, we neglected
the buildup of any growth-induced stress by the cortex cell
itself. The elastic energy of the cortex layer thus becomes
equivalent to that of a uniformly twisted rod with radius
R� r0 and torsion � ¼ tan�=ðR� r0Þ, providing Ein ¼
ð�=4Þ�CðR� r0Þ2

R
L
0 sin� tan�ds. Note that the close-

packing geometry imposes the constraint 2� cos�=N ¼
2r0=R, suggesting that the number of rods varies with �
according to N ¼ N0 cos�, where N0 ¼ �R=r0.
Furthermore, this simple relation holds true only when
N � 1 and is valid for Arabidoposis roots (typically N ¼
30–40 [8]). Therefore, the total elastic energy is now
written in the form E¼EinþEout¼N0

R
L
0 eð�Þds, where

eð�Þ ¼ eoutð�Þ cos� þ ð��C=4N0ÞðR � r0Þ2 sin� tan�.
The equilibrium pitch angle �ð�;�Þ is determined by the
equation deð�Þ=d� ¼ 0, which yields

0 ¼ ð1þ 	Þsin2�ð4cos2�� sin2�Þ þ 
ð2þ tan2�Þ
þ ð2 cos2� cot�� 1

2 sin2�þ �0RÞð12 sin2�� �0RÞ;
(6)

where 	 ¼ A=C� 1 is the Poisson’s ratio and 
 ¼ ��CR
4

2N0C
.

Substituting the expressions for C and N0 given above into

, we find 
 ¼ ðr0=4�hÞðR=r0Þ3ð1� r0=RÞ2ð�C=�EÞ. For
sufficiently small�, the approximate solution of Eq. (6) is
found to be

FIG. 3 (color online). (a) Schematic representation of the root
or hypocotyl organ. (b) Composite elastic model for a cylindrical
organ with constant radius R. The inner and outer layers share
growth-induced stress via tissue tension. The inter-rod distances
are somewhat overdrawn.
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� ’ R�0ð�;�Þ
1þ 
� 1

2R
2�20ð�; �Þ

: (7)

For purely unidirectional growth, i.e., �1 ¼ 0, we
obtain � ¼ �ðR=r0Þ tan�=ð1þ 
� R2=ð2r20Þtan2�Þ. The
equations (4) and (7) constitute the main result of this
paper. Several conclusions can be drawn from Eq. (7).
First, when either the growth is isotropic, i.e., � ¼ 0, or
when the microtubule array does not tilt, i.e., � ¼ 0, we
obtain � ¼ 0. Thus, the helical growth of Arabidopsis
mutants is a direct consequence of the simultaneous pres-
ence of the helical microtubule array and anisotropic
growth. Second, because 0 � � � 1, the handedness of
the microtubule helices is always opposite to that of the
helical growth of the organ, which is entirely consistent
with the detailed observations. Finally, the ratio of the
inner or outer elastic moduli, 
, is a key parameter that
governs the magnitude of �, which was not addressed in
the previous model [9]. Interestingly, the ratio of inner to
outer (or core to shell) moduli has been suggested as one of
the critical parameters that determine the skin patterns of
other plants such as certain fruit and vegetable plants [31].

The numerical solutions of Eq. (6) are plotted in Fig. 4 as
functions of the microtubule array angle � and the coupling
strength 
. For certain values of 
, Eq. (6) allows multiple
solutions; therefore, the lowest energy solution is plotted in
Fig. 4 [32]. The experimental parameters are estimated as
follows: From the images shown in Refs. [9,33,34], we see
N0 � 30, thus R=r0 � N0=�� 10. Because many biologi-
cal materials are nearly incompressible, we used the
Poisson’s ratio of the cell wall 	 ¼ 0:5 [26]. Radial and
circumferential stretching are not observed during the
growth of individual epidermal cells, except during the
initial growth stage [18]. Therefore, we set �1 ¼ 0 (and
thus � ¼ 1Þ. The cell wall of an individual epidermal cell
is generally very thin, but to our knowledge, no precise
value is available for its thickness [35]. Images of chemi-
cally stained dead cells [33] and live cell images from
phase contrast microscopy [34] suggest that the cell wall
of these cells is very thin and its value is less than 10% of
its radius. We therefore assumed h=r0 � 0:05, which leads

to 
� 1300��C=�E. Because �C=�E is unknown, we
plotted the values of 
 and � in Fig. 4(b) to observe how
the root angle� varies with 
. Through systematic experi-
mental measurements, the magnitude of� was found to be
5	–10	 with � ¼ 30	–40	 for left-handed helical growth
mutants, i.e., lefty [10], whereas the magnitude of � was
found to be 10	–20	 with � ¼ 20	–30	 for right-handed
helical mutants, i.e., spiral [9]. From Fig. 4, we obtained

� 80 or �C=�E � 0:06 for lefty mutants and 
� 25 or
�C=�E � 0:02 for spiral mutants. The predicted differ-
ence in the shear moduli between two layers is substantial
and can be investigated in future experiments.
The helical growth of an epidermal cell in a cell suspen-

sion has been directly observed in a recent experiment [12],
which provides a solid experimental ground for our mod-
eling assumption. The mechanism underlying the estab-
lishment of microtubule helical arrangement is being
explored by other microscopic modeling approaches also
[36–38]. We note that the present analysis lacks a few key
features necessary for a realistic description of plant tissue
growth, such as the effects of turgor pressure, residual
stress, and wall reinforcements. Because soft tissues often
undergo large deformations in response to physiological
loading, their physical properties should be modeled
within the theory of finite elasticity in future extensions
of this study, as done in Refs. [30,39]. Nevertheless, the
proposed model can explain how the microscopic chirality
determines the macroscopic chirality affected only by the
long-range elastic interactions. This information will be
potentially useful in understanding other superhelical
structures over various biological scales, ranging from
filamentous protein assemblies to stems, arteries, and tree
trunks.
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