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The Coulomb gap in the single-particle density of states (DOS) is a universal consequence of electron-

electron interaction in disordered systems with localized electron states. Here we show that in arrays of

monodisperse metallic nanocrystals, there is not one but three identical adjacent Coulomb gaps, which

together form a structure that we call a ‘‘Coulomb gap triptych.’’ We calculate the DOS and the

conductivity in two- and three-dimensional arrays using a computer simulation. Unlike in the conven-

tional Coulomb glass models, in nanocrystal arrays the DOS has a fixed width in the limit of large

disorder. The Coulomb gap triptych can be studied via tunneling experiments.
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Granular metals and arrays of metallic nanocrystals
(NCs) represent interesting composite systems, wherein
the unique properties of individual NCs are combined
with the collective, correlation-driven effects between the
NCs to produce novel material properties [1,2]. One of
the most important properties is the electron conductivity,
which, in the limit of weak coupling between NCs, pro-
ceeds by phonon-assisted tunneling, or ‘‘hopping,’’ be-
tween the NCs through the insulating gaps that separate
them. In relatively dense NC arrays, electron conduction
can occur both through nearest-neighbor hopping and
through ‘‘cotunneling’’ of electrons between distant NCs
via a chain of intermediate virtual states [2–5]. In the
presence of some disorder, the latter mechanism dominates
at low temperatures, where the length of the hops grows to
optimize the conductivity. This transport mechanism was
introduced by Mott [6], and is called variable range hop-
ping. When the Coulomb interaction between localized
electrons is taken into account, it can be shown that at a
sufficiently low temperature, variable range hopping con-
ductivity obeys the Efros-Shklovskii (ES) law [7]

� ¼ �0 exp½�ðTES=TÞ1=2�; (1)

where �0 is a constant (or a weak power-law function of
temperature) and TES is a characteristic temperature.
Equation (1) has been observed in a number of granular
metal systems at low temperatures (see Ref. [2] and the
references therein). In these systems, as in lightly doped
semiconductors and other ‘‘Coulomb glasses,’’ ES conduc-
tivity can be seen as the result of a vanishing single-particle
density of states (DOS) at the Fermi level �. This vanish-
ing DOS is the consequence of a very general stability
criterion of the ground state [8], and it implies that in a
system of d dimensions the DOS gðEÞ satisfies

gðEÞ< Ad

e2d
jEjd�1: (2)

Here, Ad is some numerical constant of order unity,
E is the electron energy relative to the Fermi level, and
e is the electron charge. Equation (2) is called the
‘‘Coulomb gap.’’
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FIG. 1 (color online). The DOS of a regular array of mono-
disperse NCs where E� ¼ E=ðe2=2C0Þ is the dimensionless
single-particle energy and g�ðE�Þ ¼ ðe2Dd=2C0ÞgðE�Þ the di-
mensionless DOS; D is the NC diameter. Here, the results are
shown from a computer simulation of (a) a two-dimensional
(2D) square lattice and (b) a three-dimensional (3D) cubic
lattice. The shaded area shows filled electron states, and the
empty area indicates empty states. In addition to electron-hole
symmetry, the two peaks of the DOS have mirror symmetries
across E� ¼ �1 (dotted lines). This symmetry creates from the
central Coulomb gap two additional half-gaps at E� ¼ �2,
resulting in a ‘‘Coulomb gap triptych.’’ The insets show the
DOS near the Fermi level E� ¼ 0 in log-log scale.
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In this Letter, we report an additional striking feature of
the DOS in periodic arrays of monodisperse metal NCs
surrounded by a good insulator with random impurity
charges. We show that the Coulomb gap at E ¼ 0 neces-
sarily implies the existence of additional, identical
Coulomb gaps at energies E ¼ �e2=C0, where C0 is the
self capacitance of each NC. This result is shown in Fig. 1.

In Fig. 1, one can see that to the right of the Fermi level,
at E> 0, the DOS curve gðEÞ is reflected across the
vertical line E ¼ e2=2C0 into the interval e2=2C0 <E<
e2=C0. Similarly, on the left side of the Fermi level, the
portion of the gðEÞ curve corresponding to �e2=2C0 <
E< 0 is reflected across the vertical line E ¼ �e2=2C0.
We refer to this characteristic shape as a Coulomb gap
triptych. As we explain below, its structure is the result of
an additional symmetry in the system that arises from the
discrete charging spectrum of individual NCs. In this way,
the Coulomb gap triptych represents a bridge between the
concepts of the Coulomb gap and the Coulomb blockade.

Experimentally, regular arrays of metal NCs can now be
reliably synthesized with diameter D in the range 3–7 nm
and size dispersion less than 5% [1,2,5]. For such small
NCs, the self capacitance C0 is also small: C0 ¼ �D=2,
where � is the effective dielectric constant of the array,
given approximately by the Maxwell-Garnett formula
[9,10]. Correspondingly, the Coulomb self-energy q2=2C0

of an NC with charge q plays a large and important role in
electron transport. To see this, one should imagine a hypo-
thetical NC array with no disorder. In such an array, in the
ground state all the NCs are neutral and electron conduction
requires the thermal excitation of positive-negative NC
pairs. Thus, conductivity is activated with an activation
energy e2=2C0. For nanometer-sized NCs, this activation
energy can easily exceed the thermal energy kBT.

In the presence of some finite charge disorder, however,
the fluctuating Coulomb potential can cause charging of
NCs in the ground state and thus lead to a Coulomb gap in
the DOS and ES conductivity. To show how this happens,
we adopt the following simplified model in this Letter. We
assume that identical, spherical, metallic NCs reside in a
regular d-dimensional square lattice with lattice constant
D0 and that impurity charges �e are embedded in the
insulator (oxide) between the NCs. Such impurity charges
effectively create a fractional donor charge Qi that resides
on each NC i, for reasons that are explained below. The net
charge of the NC can then be written as qi ¼ Qi � eni,
where ni is the integer number of electrons that reside on
the NC relative to its neutral state (ni can be either positive
or negative). Given this model, the Hamiltonian for the
system is

H ¼ X

i

ðQi � eniÞ2
2C0

þX

hi;ji
C�1
ij ðQi � eniÞðQj � enjÞ: (3)

Here, the first term describes the Coulomb self-energy of
each NC and the second term describes the interaction

between the charged NCs. The coefficient C�1
ij is the

inverse of the matrix of electrostatic induction Cij. This

Hamiltonian has also been proposed as a model for arrays
of large semiconductor NCs [11].
Owing to the presence of impurity charges, the electrons

become redistributed among the NCs from their neutral
state so as to screen the disorder Coulomb potential. In
order to calculate the DOS and the conductivity, we first
attempt to find numerically the set of electron occupation
numbers fnig that minimizes the Hamiltonian. In the nu-
merical simulations that we describe below, we take the
approximations that C0 ¼ �D=2 and C�1

ij ¼ 1=�rij. These

approximations do not affect our main conclusions, as we
explain below.
The model of fractional donor charges Qi was first put

forward in Ref. [3]; here, its justification is briefly re-
peated. When an impurity charge, say, with a charge þe,
is located close to the point of contact between two NCs
labeled A and B, it induces negative image charges �qA
and �qB in the surfaces of the NCs A and B, respectively.
This is shown schematically in Fig. 2. In order to maintain
overall neutrality of the NCs, an equal and opposite image
charge appears at the center of each NC: þqA and þqB.
(These ‘‘image charges at the center’’ represent a uniform
electronic charge at the NC surface.) The values of qA and
qB are such that together the image charges �qA and �qB
neutralize the donor charge: qA þ qB ¼ e. Their respective
magnitudes are determined by the distance between the
impurity and each NC surface. For example, if the impurity
sits exactly along the line connecting the centers of NCs A
and B, and if the gap w ¼ D0 �D between the NCs
satisfies w � D, then qAxB ¼ qBxA, where xA and xB are
the distances between the impurity and the surfaces of the
NCs A and B, respectively. Since the impurity charges and
the image charges�qA and�qB together form a compact,
neutral arrangement, the net effect of the impurity charge is
to produce ‘‘fractionalized’’ donor charges, such that þqA
is relayed to the center of NC A and þqB is relayed to the
center of B.

+qA +qB

+e

-qB-qA

D/2

D’

FIG. 2 (color online). A schematic depiction of the fractional-
ization of a charged impurity (small black circle) between NCs
(large gray circles). The positive impurity induces negative
image charges (white circles) in nearby metal surfaces and is
effectively neutralized, while equal and opposite positive images
are conveyed to the center of the NCs (�’s).
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In this way, each NC i can be said to have a fractional
donor charge Qi, which is equal to the sum total of the
fractionalized charges donated by individual impurities
around it. In the limit where there are very many impurity
charges surrounding each NC, one can suppose that the
random variable Qi is Gaussian distributed with some
standard deviation larger than e. In fact, however, in such
cases one can effectively adopt a much simpler model in
which the value ofQi is chosen randomly from the uniform
distribution Qi 2 ½�e=2;þe=2�. To see why this model
is valid, consider that each NC minimizes its Coulomb
self-energy by minimizing the magnitude of its net
charge, jQi � enij. Since ni can take any integer value,
it is generally true that in the ground state �e=2 � Qi �
eni � e=2. In other words, each NC can effectively adjust
to the presence of an arbitrarily strong charge disorder by
changing its electron number ni (say, by drawing electrons
from the voltage source) so that its net charge acquires a
magnitude smaller than e=2. This has important implica-
tions for the disorder dependence of conductivity, as we
show below.

Given the ground state configuration for a particular
system, defined by the set of electron occupation numbers
fnig, one can determine the energy of the highest filled

electron level, EðfÞ
i , and the lowest empty electron level,

EðeÞ
i , at each NC i. Specifically:

EðfÞ
i ¼ 2e2ni � 2Qie� e2

2C0

� e
X

j�i

C�1
ij ðQj � enjÞ; (4)

EðeÞ
i ¼ 2e2ni � 2Qieþ e2

2C0

� e
X

j�i

C�1
ij ðQj � enjÞ: (5)

These energies are defined so that the Fermi level � ¼ 0

and in the ground state EðfÞ
i < 0 and EðeÞ

i > 0 for all i. The
single-particle DOS gðEÞ is defined by making a histogram

of the energy values EðfÞ
i and EðeÞ

i , and has also been termed
the ‘‘density of ground states’’ [3]. More highly excited
electron energy states are ignored in this study, as they play
no role in conductivity at kBT � e2=C0.

In order to evaluate numerically the DOS, we use a
computer simulation to search for the ground state arrange-
ment of electrons, fnig, in a finite array of NCs. For
simplicity, we set the lattice constant D0 ¼ D; this corre-
sponds to the limit where the gap w between the NCs is
very thin while the tunneling transparency of the barrier
between them remains much smaller than unity. In our
simulation, we search for the ground state by looping
over all NC pairs i, j and attempting to move one electron
from i to j. If the move lowers the HamiltonianH, then it is
accepted, otherwise it is rejected. Equivalently, one can say
that for all i, jwe check that the ES ground state criterion is
satisfied:

EðeÞ
j � EðfÞ

i � e2C�1
ij > 0: (6)

It should be noted that this procedure does not in general
find the exact ground state, but instead finds only a
‘‘pseudoground state’’ that is stable with respect to
single-electron transfers. In principle, the system energy
can be lowered further by some simultaneous multielectron
transfers. Such processes are generally seen to have only a
relatively weak effect on the DOS [12,13] that slightly
deepens the Coulomb gap near the Fermi level.
The resulting DOS is shown in Fig. 1(a) for a

two-dimensional (2D) simulated system of size
100� 100 lattice sites, and in Fig. 1(b) for a three-
dimensional (3D) system of size 25� 25� 25. Electron
energies are plotted in the dimensionless form E� ¼
E=ðe2=2C0Þ, and the DOS is plotted in the dimensionless
form g�ðE�Þ ¼ ðe2Dd=2C0ÞgðE�Þ. The insets to these
figures show a log-log plot of the DOS near E ¼ 0, sug-
gesting that in 2D systems the DOS follows g2DðEÞ / E1:5

at small energies and in 3D systems g3DðEÞ / E2:4. These
exponents are somewhat larger than the theoretical ones
given in Eq. (1), so that apparently the ES bound is not
saturated. This is similar to what happens in the Efros
model of the Coulomb glass [14] at disorder strength
A ¼ 1 [12]. The results of Fig. 1 are generated using a
uniform distribution Qi 2 ½�e=2; e=2� for the fractional
charge. If one instead takes Qi to be Gaussian distributed,
with a standard deviation �e, the resulting DOS is every-
where equal to that of Fig. 1 to within 0:6%.
Figure 1 also highlights the striking additional symmetry

in the DOS in both 2D and 3D, as compared to the DOS in
the conventional Coulomb glass problem [8,12]. That is,
each peak in the DOS is symmetric with respect to reflec-
tions about E� ¼ �1, so that the DOS has identical, re-
peated Coulomb gaps at E� ¼ �2. The origin of these
additional Coulomb gaps can be understood by noting a
particular symmetry in the Hamiltonian that is reflected

in the filled and empty state energies, EðfÞ
i and EðeÞ

i .
Specifically, by combining Eqs. (4) and (5), one can
show that

E�ðeÞ
i ¼ E�ðfÞ

i þ 2 (7)

for all i. Thus, all NCs contribute to the DOS two energy
levels—one filled and one empty—separated by e2=C0.
This implies that as the DOS collapses at jE�j ! 0 (the
Coulomb gap), the DOS must also collapse at jE�j ! 2 in
identical fashion. That is, the ES stability criterion of
Eq. (6) places constraints both on the DOS near E ¼ 0
and on the DOS near E ¼ �e2=C0. A similar observation
was made for a somewhat different system in the very
recent Ref. [15].

One can also note that states with E�ðfÞ
i <�2 or E�ðeÞ

i >2
are prohibited, since by Eq. (7) these would imply that

some NCs have EðeÞ
i < 0 or EðfÞ

i > 0. Thus, gðEÞ is strictly
zero at jE�j> 2. This is a markedly different situation than
in the conventional Efros model [14], where the width of
the DOS reflects the characteristic strength of the disorder.
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In the present problem, for a large enough disorder the
DOS has a saturated width e2=C0. This saturation occurs
because the number of electrons n at each site can adjust to
screen an arbitrarily large Coulomb disorder. Thus, one can
expect that for large disorder, the conductivity also be-
comes independent of disorder strength.

In order to evaluate the conductivity directly, we employ
the approach of the Miller-Abrahams network [16], in
which each pair ij of NCs is said to be connected by
some equivalent resistance Rij. The value of Rij increases

exponentially with the distance rij between the NCs and

the activation energy �Eij required for the electron hop-

ping between i and j according to Rij / exp½2rij=�þ
�Eij=kBT�, where � is the electron localization length

[3] and the value of �Eij is determined by the ground state

energies fEðfÞ
i g and fEðeÞ

i g [11]. The resistance of the system
as a whole is found using a percolation approach.
Specifically, we find the minimum value Rc such that if
all resistances Rij with Rij < Rc are left intact while others

are eliminated (replaced with R ¼ 1), then there exists a
percolation pathway connecting opposite faces of the
simulation volume. The conductivity � of the system is
equated with 1=ðRcD

d�2Þ.
Our results for the conductivity are shown in Fig. 3,

plotted as a function of the dimensionless temperature
T� ¼ 4DC0kBT=ðe2�Þ raised to the power �1=2. The
results indicate that the conductivity is well described
by the ES law of Eq. (1) at relatively small temperatures
T� � 1, both in 2D and 3D [17]. This behavior is consis-
tent with the prominent Coulomb gaps seen in Fig. 1. In
both 2D and 3D, replacing the uniform distribution of Qi

with a distribution with larger variance—for example, by

taking Qi as the sum of three or more independent frac-
tional charges—did not affect the conductivity to within
our numerical accuracy. This insensitivity to the disorder
strength stands in contrast to the Efros model [14], where a
large disorder widens the DOS, so that ES conductivity
exists only when the temperature is sufficiently small and
the electron hops are confined to within the parametrically
narrow window of energies in which gðEÞ is constrained by
the Coulomb gap [8]. On the contrary, in arrays of mono-
disperse metallic NCs, the DOS becomes essentially inde-
pendent of disorder strength, so that even at large disorders,
the Coulomb gap plays a prominent role and the conduc-
tivity follows the ES law.
The triptych structure of the DOS should have observ-

able consequences for a number of experiments on metal
NC arrays. It is possible, for example, that the DOS can be
probed directly by tunneling experiments, similar to the
ones that have directly observed the Coulomb gap in doped
semiconductors [18]. For systems with a finite dispersion
�C in NC self-capacitance, the repeated Coulomb gaps
will be smeared over some finite energy interval rather than
collapsing to zero exactly at E� ¼ �2. We simulated this
behavior numerically by adding a stochastic spatial varia-
tion to C0, and for a root mean square deviation �C � C0,
we arrived at gðE� ¼ �2Þ=gðE� ¼ �1Þ 	 3ð�C=C0Þ2.
This implies that for a system with 5% dispersion in the
NC diameter, the collapse of the DOS at E� ¼ �2 is
complete to within 1%, and the resulting g�ðE�Þ curve
would not be distinguishable from that of Fig. 1 if added
to the plot.
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