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3Centre de Physique Théorique, Ecole Polytechnique, CNRS-UMR7644, 91128 Palaiseau, France

4Japan Science and Technology Agency, CREST, Kawaguchi 332-0012, Japan
5Department of Physics, Mathematical Physics, Lund University, Sölvegatan 14A, 22362 Lund, Sweden

6Nanosystem Research Institute (NRI), AIST, Tsukuba, Ibaraki 305-8568, Japan
7Department of Physics, Columbia University, 538 West, 120th Street, New York 10027, USA

(Received 23 April 2012; published 19 September 2012)

We provide a prescription for constructing Hamiltonians representing the low-energy physics of

correlated electron materials with dynamically screened Coulomb interactions. The key feature is a

renormalization of the hopping and hybridization parameters by the processes that lead to the dynamical

screening. The renormalization is shown to be non-negligible for various classes of correlated electron

materials. The bandwidth reduction effect is necessary for connecting models to materials behavior and

for making quantitative predictions for low-energy properties of solids.
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A key step in the theoretical analysis of strongly corre-
lated materials is the derivation, from an all-electron
Hamiltonian in the continuum, of an effective model which
correctly captures the physics of the low-energy degrees of
freedom. Tremendous progress in this direction has been
achieved by using density functional theory (DFT) tech-
niques [1] to compute a full set of energy bands, fromwhich
a subset of correlated orbitals is abstracted for further de-
tailed study using many-body [typically dynamical mean
field (DMFT) or LDAþ U] methods [2–4]. The interaction
parameters used in the many-body studies are the matrix
elements of the screened Coulomb interaction in the corre-
lated subspace. Various methods are used to obtain the
screened matrix elements, including the constrained local
density approximation [5], linear response [6], or the con-
strained random phase approximation (cRPA) [7]. This
DFTþ DMFT approach enables quantitative, testable
theoretical predictions for correlated materials.

In this Letter, we show that this scheme misses an im-
portant aspect of the physics: the downfolding produces a
dynamically screened Coulomb interaction which leads to
an effective model with a bandwidth that is reduced relative
to the starting (e.g., DFT) bandwidth and a low-energy
spectral weight, which is also reduced. This effect has
previously been noticed [7–10]. A similar renormalization
was also discussed in the context of Holstein-Hubbard
models in Refs. [11,12]. We present an explicit nonpertur-
bative prescription for determining the renormalizations
quantitatively, and demonstrate that the resulting effective
model provides a good description of the low-energy part of
the full (dynamically interacting) model over wide parame-
ter ranges. Computations of the renormalizations for wide

classes of correlated electron materials indicate that their
inclusion is crucial for a quantitative description, in par-
ticular, resolving a long-standing discrepancy between the
cRPA estimates of the Coulomb interaction and the values
needed to describe experiments.
We first provide a demonstration for the simplest case,

where the downfolding from the full band structure is to a
one-band model with hopping amplitude tij between the

lattice sites i and j. Electrons with spin � in the correlated
orbital localized at site i are created (annihilated) by the

operator dyi� [di�]. Double occupation of a given atomic
site costs a Coulomb energy U, which is renormalized
from a bare value V (obtained from the site local matrix
elements of e2=r among the correlated orbitals) because
of screening by degrees of freedom eliminated in the
downfolding process. The interaction, thus, takes the gen-

eral form 1
2 ðV�ð�Þ þUretð�ÞÞnið�Þnið�0Þ, with nið�Þ ¼

��d
y
i�ð�Þdi�ð�Þ the local density operator at the imaginary

time �. Screening is contained in the retarded part Uret,
which is parametrized by a continuum of modes of energy
� with coupling strength �2ð�Þ ¼ �ImUretð�Þ=�, deter-
mined by the charge fluctuations,

Uretð�Þ ¼ �
Z 1

0
d��2ð�Þ cosh½ð�� �=2Þ��= sinh½��=2�;

(1)

where � is the inverse temperature. For simplicity of pre-
sentation, we assume at first that there is only one important
bosonic mode of energy !0 and coupling strength �. The
Hamiltonian is then
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H ¼ �X
ij�

tijd
y
i�dj� þ V

X
i

dyi"di"d
y
i#di# þ�

X
i�

dyi�di�

þ!0

X
i

byi bi þ �
X
i�

dyi�di�ðbi þ byi Þ: (2)

A Lang-Firsov (LF) transformation [13,14] H ! HLF ¼
eSHe�S with S ¼ �

!0

P
i�ni�ðbyi � biÞ allows one to

rewrite the model in terms of the polaron operators

cyi�¼ expð �!0
ðbyi �biÞÞdyi� and ci� ¼ expð �!0

ðbi � byi ÞÞdi�.
We note that c and cy obey the same fermionic anticom-
mutation relations as the original electronic operators
(d and dy). Neglecting one-body terms which can be
absorbed in a chemical potential shift, we have

HLF¼�X
ij�

tijc
y
i�cj�þU0

X
i

cyi"ci"c
y
i#ci# þ!0

X
i

byi bi; (3)

with the screened Hubbard interaction U0 ¼ V � 2�2

!0
.

We now propose that the low-energy effective model is
given by the projection of Eq. (3) onto the subspace of
zero-boson states, Heff ¼ h0jHj0i, an assumption based on
the separation of plasmon excitations from the low-energy
spectral properties. This ansatz becomes exact in the limit
of infinite plasma frequency and, as will be seen, gives a
remarkably good description for physically relevant val-
ues. The effective model is then

Heff ¼ �X
ij�

ZBtijd
y
i�dj� þU0

X
i

dyi"di"d
y
i#di#; (4)

that is, an effective Hubbard model with an instantaneous
interaction corresponding to the low frequency limit of the
screened interaction and a new feature, namely a band-
width renormalized by ZB ¼ expð��2=!2

0Þ. An additional
physical consequence of the low-energy projection is that
the photoemission spectral weight in the frequency range
described by the effective model is reduced by the factor
ZB, relative to what would naively follow from HLF.
Mathematically, Glow-energy, the physical electron Green
function in the frequency range described by the effective
model, is

Glow-energy
ij ð�Þ ¼ �ZBhTdið�Þdyj ð0ÞiHeff

; (5)

where�hTdið�Þdyj ð0ÞiHeff
is the Green’s function Geff

ij ð�Þ of
the effective Hamiltonian Heff in Eq. (4). Thus, the observ-
able spectral functionAlow-energy¼� 1

� ImGlow-energyð!�i�Þ
becomes

Alow-energyð!Þ ¼ �ZB

�
ImGeffð!� i�Þ: (6)

The physical origin is that part of the physical photoemis-
sion spectrum corresponds to the simultaneous creation of
a hole and a plasmon excitation; these plasmon shakeoff
processes account for the remaining 1� ZB spectral
weight.

The effective model becomes an exact description of the
low-energy physics only when the ratio of the boson fre-
quency !0 to a relevant energy E� diverges, but we find
that the effective model gives a reasonably good descrip-
tion even if !0=E

� is not too large. As an example, Table I
compares exact results (obtained using the methods of
Ref. [15]) for the critical interaction strength Ucrit needed
to drive a metal-insulator transition in single site DMFT to
the predictions of the effective model. In these computa-
tions, we assume that the tij gives a semicircular density of

states with half bandwidth D ¼ 1. Combining previously
computed single site DMFT results [15] with our band-
width reduction prescription gives, at inverse temperature
� ¼ 100=D, an effective model predictionUeff

crit � 2:55ZB.

One sees that the effective model result is within 15% of
the exact result except when there is strong screening and
the boson frequencies are smaller than the full bandwidth
(two in present units).
Figure 1 compares the electron spectral function, calcu-

lated from Eq. (2) with semicircular density of states (half
bandwidth D ¼ 1), for screened interaction U0 ¼ 2 with
values of ZB representative of typical correlated electron
materials to two approximations: the effective model de-
fined above, and a ‘‘static U model’’ which uses the static
value of the screened Coulomb interaction but does not
include the bandwidth reduction. The static U model cor-
responds to what is normally done in DFTþ DMFT cal-
culations. The analytic continuations are obtained using
the technique proposed in Ref. [16]. We see that the
effective model with bandwidth reduction ZB reproduces
very well the effective bandwidths of the Hubbard bands
for all !0 taken into account here, which vary from 10
down to 2.5. Even the smallest !0, which is not in the
antiadiabatic regime, yields Hubbard bands qualitatively
well described by the static model with bandwidth renor-
malization ZB. The static U model is seen to be a poor
approximation.
Table II shows the results of an alternative analysis,

carried out at the level of the quasiparticle renormalization

TABLE I. Critical interaction strength Uexact
crit (presented in

terms of zero-frequency screened value) needed to drive the
metal-insulator transition obtained from the single site DMFT
approximation to Eq. (2) at inverse temperature � ¼ 100 and
compared to the estimate Ueff

crit for different values of the screen-

ing frequency !0 and strength �. Also shown is the Lang–Firsov
renormalization factor ZB ¼ exp½��2=!2

0�.
!0 � ZB Uexact

crit [15] Ueff
crit

1.5 0.820 0.74 2.103 1.891

1.5 2.010 0.17 0.613 0.423

2.5 1.330 0.75 2.085 1.921

2.5 2.770 0.29 0.861 0.747

10.0 3.725 0.87 2.225 2.220

10.0 6.465 0.66 1.640 1.679
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a¼1=ð1�@�=@i!nÞ, which is obtained directly from the
imaginary time computations. We see that the ‘‘static U’’
result gives renormalization factors in error by factors of
two or more in the half filled, strongly correlated case, and
unacceptably large errors in the weakly correlated quarter
filled case. The effective model (row!0 ¼ 1) is very close
to the exact result for all screening frequencies in the
weakly correlated quarter filled case and is reasonably
close to the exact result, even as the adiabatic limit is
approached.

Analogous arguments for a model comprising, also,
itinerant p states, and thus, hopping parameters T pp,

T pd, andT dd lead to a renormalization of each d operator

by the factor
ffiffiffiffiffiffi
ZB

p ¼ h0j expð �!0
ðbi � byi ÞÞj0i so that the

hopping part of the one-particle Hamiltonian is renormal-
ized as

ðpydyÞ
T pp

ffiffiffiffiffiffi
ZB

p
T pdffiffiffiffiffiffi

ZB

p
T y

pd ZBT dd

0
@

1
A p

d

 !
; (7)

where the site dependence of each orbital species is not
explicitly denoted. Equation (7) shows that the bandwidth
reduction implied by our effective model happens in a
nontrivial way in the case of the multi-band models usually
dealt with in first-principles calculations.

The arguments we have given are readily generalized to
the case of an arbitrary dynamical interaction. The repre-
sentation of Eq. (1) corresponds to a continuum of boson

excitations, bið�Þ, one for each frequency � in the screen-
ing process, with coupling �ð�Þ. We then apply a general-
ized LF transformation obtaining

U0 ¼ V þ 2=�
Z 1

0
d�ImUretð�Þ=�; (8)

ZB ¼ exp

�
1=�

Z 1

0
d�ImUretð�Þ=�2

�
: (9)

TABLE II. Quasiparticle residue a ¼ 1=ð1� @Im½�ði!Þ�=
@!j!¼0Þ computed from the effective Hamiltonian Eq. (4)
with screened U0 ¼ 2, and different !0, ZB, and particle density
as shown. The values in parenthesis give the relative discrepancy
jað!0Þ=að!0 ! 1Þ � 1j. Note that the static model without
bandwidth reduction (last row) is substantially incorrect.

Half-filling Quarter-filling

ZB ¼ 0:861 ZB ¼ 0:861 ZB ¼ 0:741

!0 ¼ 2:5 0.137 (0.37) 0.635 (0.04) 0.560 (0.10)

!0 ¼ 3 0.125 (0.32) 0.631 (0.03) 0.551 (0.08)

!0 ¼ 10 0.091 (0.06) 0.604 (0.01) 0.509 (0.01)

!0 ¼ 1 0.085 0.609 0.504

static U 0.253 0.713 0.713
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FIG. 1 (color online). Spectral functions computed fromEq. (2)
at various screening frequencies !0 with � ¼ 40, screened
interaction U0 ¼ 2, and coupling constants chosen to produce
the renormalization factor ZB as indicated. Also shown are the
spectral functions computed from the effective model [Eq. (6)]
and for the static U approximation. TABLE III. Boson renormalization factor ZB, characteristic

frequency !0 [eV], bare interaction V [eV], and zero-frequency
screened interaction U0 [eV] as calculated within the cRPA, in
the implementation of Ref. [17]. For the oxide and sulfide
compounds (except SrMnO3), the data refer to a model compris-
ing only the t2g states, where U is defined as the average over

the diagonal entries of the Hubbard interaction matrix Ummmm.
For the pnictide compounds, as well as for SrMnO3 and CuO,
a hybrid ‘‘d-dp’’ model in the notation of Ref. [17,18] was
constructed and Uð¼ F0Þ is defined as the average over all
density-density interaction matrix elements. Experimental lattice
structures (rutile in the case of VO2, hexagonal lattice in the case
of TaS2) were used except in the cases of Sr2VO4, LaVO3, and
SrMnO3, where an undistorted (layered) perovskite structure was
adopted. The column headed Ulit gives U values obtained via a
variety of methods other than cRPA claimed in the literature to
give quantitative agreement with experiment when used in
DFTþ DMFT (oxides, sulfides and pnictides) or DFTþ U
calculations (SrMnO3 and CuO) within the same correlated
subspace, but without the band renormalization physics.

ZB !0 V U0 Ulit

SrVO3 0.70 18.0 16.5 3.3 4–5 [19–22]

Sr2VO4 0.70 18.1 15.7 3.1 4.2 [23]

LaVO3 0.57 10.3 13.3 1.9 5 [24]

VO2 0.67 15.6 15.2 2.7 4 [25,26]

TaS2 0.79 14.7 8.4 1.5

SrMnO3 0.50 13.3 21.6 3.1 2.7 [27]

BaFe2As2 0.59 15.7 19.7 2.8 5 [28]

LaOFeAs 0.61 16.5 19.1 2.7 3.5–5 [28–30]

FeSe 0.63 17.4 20.7 4.2 4–5 [28,31]

CuO 0.63 21.1 26.1 6.8 7.5 [32]
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Matching this to the single mode formula implies a char-
acteristic frequency

!0 ¼
R1
0 d��ImUretð�Þ=�2R1
0 d�ImUretð�Þ=�2

: (10)

Our theory has important implications for electronic
structure calculations for correlated materials. Table III
presents our results for !0, ZB, and U values for a range
of compounds calculated using the cRPAmethod [7], in the
implementation ofRef. [17]. TypicalZB values for oxides or
pnictides lie in the range of�0:6–0:7 indicating a substan-
tial renormalization of the low-energy bandwidths relative
to DFT calculations [33], even though the screening fre-
quencies !0 are typically high. Standard DFTþ DMFT
calculations are available for most of the compounds. As
shown in Table III, in these calculations, obtaining agree-
ment with experimental results for mass enhancements and
metal-insulator phase diagrams has required the use of U
values substantially (� 40%) larger than the low-frequency
Hubbard interactions calculated from cRPA. For example,
for SrVO3, LDAþ DMFT calculations with U ranging
from 4 to 5 eV were found to yield good agreement with
experiments [19–21] (instead of the cRPAvalue of 3.5 eV).
Similarly, in VO2,U ¼ 4:0 eV was used [25,26] instead of
U ¼ 2:7 eV. We believe that the difference arises because
the previous literature did not incorporate the bandwidth
reduction effect, and artificially compensated this by in-
creasing U. The one apparent exception is SrMnO3, where
theU value quoted in Ref. [27] was chosen to be consistent
with the magnetic moment but gaps or other dynamical
properties were not studied. A more recent work of a
t2g-only model required a rather larger value of 3.5 eV, but

overlap with eg bands precludes a cRPA estimate of ZB in

this case.
Figure 2 shows another illustration of the bandwidth

renormalization phenomenon, comparing the spectral
function of optimally doped BaFe2As2 obtained with the

‘‘static U’’ approximation [panel (a)] to the full treatment
of the dynamic U, as explained in Ref. [34] [(panel (b)],
and the effective model [panel (c)]. Comparison of panels
(a) and (b) shows that screening has a substantial effect on
the band structure, shifting the energy positions of bands
and band crossings to a significant extent. (The model with
screening also has an increased broadening, resulting from
a change in proximity to a spin freezing line whose position
depends very sensitively on parameters [34].) Comparison
of panels (b) and (c) shows that the effective model cap-
tures the changes in band energies very well, and also
reproduces the change in lifetime.
To summarize, in this Letter, we showed that the low-

energy effective Hamiltonian relevant to correlated elec-
tron materials involves two renormalizations: a reduction,
to a value smaller than the isolated atom value, of the
onsite Coulomb interaction and a reduction, to a value
smaller than the band theory value, of the bandwidth.
The reduction of the onsite Coulomb interaction is a
straightforward consequence of screening by high-energy
degrees of freedom and has been discussed in many works.
The reduction of the bandwidth is a more subtle effect,
which has important consequences for the low-energy
physics, including a reduction in the amplitude, and a
narrowing of the width of the low-energy part of the
electron spectral function, as well as a shift in the location
of the metal-insulator transition. We have provided a pre-
cise prescription for obtaining the bandwidth reduction and
have tested our low-energy effective description against
numerically exact dynamical mean field solutions of
Hubbard models with full dynamic U in a range of pa-
rameters relevant for correlated materials. Important open
questions are the issues of full charge self-consistency and
the related double counting correction, both of which
require knowledge of physics at energy scales above the
range of validity of the low-energy effective model. This is
the subject of current research.
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FIG. 2 (color online). k-resolved spectral function for KxBað1�xÞFe2As2 at optimal doping x ¼ 0:4 and � ¼ 20 eV�1, reported for a
static U standard DMFT calculation [panel (a)], the DMFT calculation with dynamic Uð!Þ [panel (b)], and the DMFT calculation for
our effective low-energy model. In all calculations, the static limit of Uð¼ F0Þ is Uð0Þ ¼ 2:84 eV, and J ¼ 0:68 eV. In the effective
model, the double counting correction is set to match the d-electron number of the dynamical calculation.
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