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Peierls distortion and quantum solitons are two hallmarks of 1-dimensional condensed-matter systems.
Here we propose a quantum model for a one-dimensional system of nonlinearly interacting electrons and
phonons, where the phonons are represented via coherent states. This model permits a unified description
of Peierls distortion and quantum solitons. The nonlinear electron-phonon interaction and the resulting
deformed symmetry of the Hamiltonian are distinctive features of the model, of which that of Su,

Schrieffer, and Heeger can be regarded as a special case.
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One-dimensional condensed-matter systems have at-
tracted increasing interest in several branches of physics:
not only do they have promising applications in
information-processing technologies, but they also play
a central role in biological molecules. They consist of
linear chains of “ions” whose conduction electrons move
primarily along the chain axis. Hence, attention can be
confined to a single chain.

In this Letter, we shall consider a half-filled one-
dimensional (1D) chain, i.e., one consisting of an even
number of ions, each of which carries a single conduction
electron. This class of systems is particularly interesting
because they undergo Peierls distortion: at equilibrium
the ions shift from the equally spaced configuration and
assume a dimerized pattern, where the bonds between
adjacent ions are alternatively short and long. To date,
the best account of this phenomenon is Peierls’s theorem,
[1], stating that the dimerized configuration minimizes the
total energy of a 1D half-filled chain. However, the proofs
of the theorem rely on models which represent the ion
coordinates as static variational parameters, [2,3]. Hence,
they do not clarify how Peierls distortion affects the energy
spectrum of the whole system, let alone how it contributes
to collective, dynamical effects that are also expected to
arise. Specifically, since the equally spaced configuration
of identical ions has a reflection symmetry, there are
two topologically nonequivalent ground states (vacua) in
which Peierls distortion may result, one obtainable from
the other by exchanging the position of long and short
bonds (Fig. 1). Hence, there are additional stable states
of the system, known as quantum solitons, where the two
degenerate vacua coexist (at a given time) and a kinklike
domain wall (S in Fig. 1) interpolates between them.
Soliton peculiar properties, such as fractional charge
eigenvalues, have thus far been described only by phe-
nomenological models [4-6], and so has their connection
with Peierls distortion. In fact, the best available model
addressing the latter issue—proposed by Su, Schrieffer,
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and Heeger (SSH) for polyacetylene [7]—assumes, for
phenomenological reasons, the electron-phonon coupling
to be linear in the ion displacements, as the expected values
of displacements in the distorted ground state are much
smaller than the interatomic distance. Overall, we lack a
unified, consistent quantum description for the systems
sustaining Peierls distortion: the available one is discon-
nected and incomplete, since it relies on ad hoc models,
valid only in special regimes.

In this Letter, we develop a unified quantum-mechanical
description of the spectral and dynamical properties of
these systems. Specifically, we propose a second-quantized
model for a 1D system supporting Peierls distortion, where
the electrons and phonons interact nonlinearly. The ion
coordinates are described as semiclassical dynamical
variables in coherent states. In this framework, we prove
Peierls’s theorem, showing that Peierls distortion is a direct
manifestation of the nonlinear electron-phonon interaction,
and we show that the system supports a kinklike excitation
propagating along the chain at constant energy. Our model
improves on the SSH model because it relaxes the linear
electron-phonon-coupling assumption, it is provably self-
consistent and it allows solitons to be dynamically de-
scribed. Moreover, we derive the dynamical description
of solitons and the proof of Peierls theorem from first
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FIG. 1 (color online). Peierls distortion. The unstable configu-
ration, £; the two stable vacua, V| and V,; a soliton S interpolating
between them.
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principles. Thus, we improve on the ad hoc, phenomeno-
logical models proposed so far to account for those
phenomena. It is worth pointing out that we aim at studying
the spectral and dynamical (soliton-related) properties of
the system (with special emphasis on the ground state and
the first excited states), not the thermodynamical proper-
ties; hence, our approach is quite different from the one
adopted in, e.g., Ref. [8].

Our model has both theoretical consequences and
experimental applications. It can be used to develop
(by statistical-mechanics methods) a more accurate de-
scription of the macroscopic properties of such systems
compared to the ones which rely on the SSH model.
Furthermore, it allows one to make predictions about the
system dynamical properties (quantum solitons) which
have so far been lacking. Experiments designed to test
these predictions would be of crucial importance in
investigating the existence and the behaviour of quantum
solitons, measuring the appropriate response function in
the soliton transport process, and would be useful in
providing better characterizations of materials such as
linear conjugated polymers. Moreover, the model devel-
ops general methods that can be employed to address
practical problems specific to quantum 1D chains, such
as achieving quantum state transfer in noisy spin chains,
[9], or to investigate coherent energy transfer in biologi-
cal molecules, [10].

The model Hamiltonian and its quantum symmetry.—
Our model describes a linear chain of 2L ions interacting
with 2L conduction electrons.

The Hamiltonian is H = Hpy, + He—py. Here, Hy, =
3 X3 (p + u3) is the Einstein-phonon Hamiltonian
with the ion mass, oscillator frequency and 7 set equal to 1;
u; is the ion displacement from the equilibrium position
R; (see Fig. 1) and p; is the corresponding momentum,
(luj, pi] = ind;;). The degrees of freedom in the plane
orthogonal to the chain are considered as “frozen.” The
electron-phonon Hamiltonian,

2L—1
Hel—ph = - Z tj,j+1(-f}+lfj + HC)
Jj=0

is a tight-binding Hubbard Hamiltonian written in terms
of fermionic creation and annihilation operators fT,
fi Afp 1 =80 {f; fe} = 0). The index j includes
both electron position and spin, but the latter is irrelevant in
the present context and will not be explicitly written. The
“hopping”™ for an electron “hopping” from site j to site
J+ 1 is the operator ;;,;, depending on the phonon
degrees of freedom. It includes, as argued in Ref. [11], the
electron-phonon coupling:

Lijv1 = TeXP[ﬁ“jﬂ - Mj)]eXP[K(PjH - Pj)]
LkERTEC,

where { and « depend on the form of the Wannier functions
out of the ion core [12]. Even though no explicit phonon-
phonon interaction is considered, the phonons are indirectly
coupled via H; ;. The SSH Hamiltonian can be recovered
by setting x = 0 and approximating #; ;. to first order in {.

The Hamiltonian H,_;, has a local dynamical symme-
try and a global symmetry, both associated with the Hopf
quantum algebra U [su(2)], [11]. The generators of this
algebra {K®), K®} close the g-deformed commutation
relations, [13], [K®, K®]=xk®, [K®) K] =

[K<3)]q, where [A], = ”;__[;’:IA and ¢ is the deformation
parameter (which can be assumed to be real). The algebra
‘U, [su(2)] belongs to the universal envelope of su(2) and
reduces to the latter for ¢ — 1. As discussed in Ref. [11],
the generators of the local dynamical symmetry contain
both fermionic and bosonic operators, and so do the gen-
erators of the global symmetry (defined via coproducting
the local operators). Also, ¢ depends on the physical con-
stants of the model, in such a way that these symmetries
reduce to a nondeformed su(2) symmetry (i.e., g — 1) if
{ — 0or k — 0. Since both { and « are non-negligible in
the systems supporting Peierls distortion, we expect that
the quantum symmetry will play a central role in describ-
ing this phenomenon.

Staggering in phonon coherent states.—We adopt for the
phonons a semiclassical, dynamical description in terms of
Glauber coherent states [14], which can be thought of as a
mean-field representation. This description has been found
to be adequate in experiments that involve phase coher-
ently excited phonons, whose phases can be tracked using
femtosecond-pulse ultrafast lasers with pulse duration
shorter than a phonon period, [15]. The global coherent
state of the ions is |Z) = ®,[z;), | = j = 2L — 1, where

lz;) = e*1/2|zf|2ezf”}|0)j, a; is the jth single-phonon crea-
tion operator, |0); is the vacuum state such that a;|0); = 0
and z; € C. Here, Rez; and Imz; represent, respectively,
the expected values in coherent states of the jth ion dis-
placement and momentum.

Inspired by Su et al. [7], we first explore the possibility
of a staggered ground state by setting z; = (—)/z, where z
is a variational parameter to be found minimizing the
ground-state energy (z = 0 corresponds to the nondimer-
ized configuration, E in Fig. 1). The staggering condition is
well defined, as it involves the expected values of the ion
positions and momenta in coherent states; in contrast, in
Ref. [7] the condition is imposed on the ion position
operators, ignoring the effect on the conjugate momenta,
which may lead to a difficulty with the Heisenberg princi-
ple. Besides, global momentum conservation implies, in
our semiclassical picture, that the ion momenta are stag-
gered too. We also require T = rexp(—ih{k), with t € R,
so that (Z|z; ;11| Z) € R (time-reversal symmetry).

The averaged Hamiltonian and its symmetry.—
Representing the Hamiltonian in coherent states we find
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Iq = <Z|H|Z> = I:Iph + ﬂel—ph = <Z|th|Z> + <Z|Hel—ph|Z>
where 1’:11311 = 2L(4(Rez)? + (Imz)* +3) (a ¢ number) and

2L—1
Ao = —g Y [cosh(3) — (=) sinh(@)](f],, f; + H.c),
j=0

where  “state  location” 3 = 2+/2[Re({z) + Im(xz)]
and effective coupling g = texp({? + k?) have been
introduced.

Fourier-transforming the {f} into the standard particle-
hole fermionic operators {c;, v;}, 0 =< k =< L — 1, we have
Iqel—ph = ZE& Hk’ with

Hk = _26.]3 - 8[J+ + J_], (1)

where € = e(k, z) = g cosh(3) cos(Fk), &= 6(k,z) =
gsinh(3) sin(¥ k) and J, = v,:rck, J_=Jt, U '=§(n§;’) -
ngf)) (dropping the mode-index k for simplicity).

The operators J,,, a € {+, —, 3}, close an su(2) algebra
in the spin—% representation, D ;. I:Iel_ph has therefore
the dynamical symmetry described by the algebra A =
@ su(2)(), whereas the original Hamiltonian had both a
global symmetry and a local dynamical symmetry associ-
ated with the g-deformed algebra U, [su(2)]. Indeed, the
generators of the quantum symmetry [11], when averaged
in coherent states, lose their dependence on the phonon
operators and reduce to the generators of su(2). Since the
quantum symmetry is induced by the electron-phonon
interaction and the latter is central to the description of
systems supporting Peierls distortion, we shall now define
a procedure to restore it.

Restoring the quantum symmetry.—To this end, it is not
convenient to refer to ‘U, [su(2)], as it is not a proper algebra
and does not provide the group operation to diagonalize the
Hamiltonian. Instead, we define a proper algebraic structure,
A, having more appealing properties. Specifically, A, is
the three-dimensional submodule of U ,[su(2)] closed with
respect to the deformed adjoint action, [,]q:[K(i), fl,=
K& fgk? — gk pg) KO, gl, = K®g — gk® and
[fg’ h]q = [fr [g’ h]q]q’ v fs & he Uq[su(z)] Re-
sorting to the deformed adjoint action is necessary since
there is no three dimensional submodule closed with respect
to the deformed commutation relations in ‘U, [su(2)]. A, is
generated by the operators

. —K® =+ +
A D) Gk
: & _ (e
ng) - q2w 24 (qK(+) K(-) — q 1 g )K(+)),

where K*), K® are the generators of U, su2)], &, =
2¢7"(g+q¢ ! and g, wER. Also, J?t =@,
Notice that for ¢ —1 A, coincides with su(2), as

[:]l = [: ]

In order to restore the quantum symmetry we simply

replace in H, each operator J, with J\

, for every k, i.e.,

HY = —2eJi? — 8(J%¢ + J9).

The numbers g and w therefore become parameters
of the model. This Hamiltonian, formally identical with
(1), is endowed with a quantum dynamical symmetry
which retains memory of the of the original Hamiltonian
symmetry. Indeed, as a side remark, a physical interpreta-
tion of the quantum symmetry restoration may be provided
by writing the generators of A , in terms of ““g-deformed”
fermioniclike operators, f, ft, obeying deformed Clifford
anticommutation relations: {f, ft} = % f2 =ft2 =
-1 Q(%)z, Q ~ log(g). These operators represent
“dressed” electrons, retaining some memory of the inter-
action with phonons.

In the D/, representation, A, ~ u(2) = u(1) & su(2)
and the eigenvalues of H,((") are

1 . _
Az = —5ela—q Ng"E T g e+ &,8

= AI(kJ Z);

(which, in the limit ¢ — 1, tend to the eigenvalues of H}.)
Since in D/, the coproduct is primitive [ A, ~ u(2)] the
global symmetry is automatically restored by setting
I:Iel_ph = ZkH,((q). The energy spectrum of the system is
therefore the sum over the modes k of the eigenvalues A .

Proving Peierls’s theorem.—The ground state energy
density has the form &,(z) =1 Yt} A_(k z) (taking
into account the spin degeneracy by a factor of 2). In the
limit L > 1,

E,(2) = —p,(2) [()W/z dkyf1 — msin®(k),

with  p,(z) = 2gq¥cosh(3), m, =1 —y2), y, =
V&, tanh(3).

The integral in £,(z) for 0= £, = 1,ie,0=m, =1
is an elliptic integral of the second kind, whereas for
1<¢é,=2, -1 =m, =1, and in general for £, >2,
it is the hypergeometric function ,F,(}, =3, 1;m,). The
integral is real and converges if [3| = £,,, where £, is the
value for which |m,| = 1 [16]. This allows one to perform
a detailed study of the total energy density of the ground
state, Egs. = Epn(2) + &£,(2).

For appropriate values of g and ¢, (i.e., w) g g exhibits
[see Fig. 2] a saddle point in Rez = 0 = Imz (correspond-
ing to the equally spaced configuration) and two degener-
ate minima in *(Rez, Imz) # 0, corresponding to the two
degenerate ground states induced by Peierls distortion.
This shows that the dimerized configuration minimizes
the total energy and proves Peierls’ theorem, as promised.
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For ¢ — 1 the total energy has only one maximum with
zero second derivative, describing a marginally stable
equilibrium for z = 0; hence, the deformed symmetry is
crucial to describe Peierls effect. This limit includes, for
k=0 and 3 < 1, the SSH model: the latter predicts
Peierls distortion only in the limit of large Rez, i.e., outside
the domain of validity of the linear approximation which
it relies upon. Hence, our model concurs with the SSH
model in predicting the properties of the ground state, with
two important differences: it is provably self-consistent
and (as explained below) it permits a dynamical descrip-
tion of the excited states.

Dynamical equations in the ground state.—In the
coherent-state formalism, x = 2Rez and p = 2Imz are
dynamical variables specifying the ion canonical coordi-
nates. £ (x, p) can then be considered as the (classical)
Hamiltonian describing the dynamics of the system ground
state in phase space C? [17]. The motion of the represen-
tative point (x(r), p(¢)) describes the collective evolution
of the phonons interacting with the electrons in the ground
state. The corresponding equations of motion along the line
x = p is (see Fig. 2) represent a nonlinearly damped,
nonlinearly driven oscillator:

i=x-P0A-7P,)—-iP

where P, = "T and
Pl p) = 4/2g sinh[v2(x + p)]
P £,g+q™h
3 E(m,) — F(m,)
% (E(mq) & mq[cosh{\/_i(x + b)}]z)
with E(m,)=,F,(}, =31, 1;m,) and F(m,)=,F,(},3 1;m,).

The presence of a damping factor shows that the Peierls-
distorted ground state is robust against perturbations.
Besides, this nonlinear equation strongly suggests the exis-
tence of soliton excitations.
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FIG. 2 (color online).

The existence of solitons.—In analogy with the proce-
dure used to prove Peierls’ theorem, we explore the possi-
bility of an excited kinklike state at site n. To do so, we
adopt as a trial description of the phonon coherent state
|Z,) = ®;’:O|zj> ® ®Y "1 |z(), where the deformed stag-
gering condition

Zj = (_)jZ,
ze= (=)

represents the presence of a kink at site n. The averaged
Hamiltonian H', = (Z,|Hy_;pl Z,) is

for0 = j=n,

forn+1=€¢=N-1,

N—1
= Z w; }Hfj + @, f ) fn 25
=

N—1
X 3 (=)fL,f; + He,

j=n+1

where w, = g — [c + (—)%s], s = gsinh(3), c = gcosh(3),
and the energy spectrum can be obtained by repeating the
diagonalization procedure via pseudofermionic operators.
To prove the existence of solitons, we shall argue that the
dynamics generated by H’,, for appropriate initial states,
induce the kink to move spontaneously from site #n to site
n+ 1.

The state at time ¢, consisting of the fermionic (pseudo-
spin) and bosonic components, can be written as | (7)) =

e 12100 p2(0a’ |0y @ ¢~ iHIlz0]| 5(0)), where z(7) satisfies
the canonical equations z = -—g, 7= i—f and &(z, n)
is the lowest eigenvalue of H’,, representing the first ex-
cited state of the system. If the time 67 of the kink motion

from site n to n + 1 is very small, one has | (1 + 81)) =

[1+61(z(a’ —2) @1 — il ® (H), + 2 EW (1)) to first

. ! +
order in 8¢ and Yx ~ 21 DIFLN yhere
iz a9z —H

Dotin) = fp —fr  f.tHc)

_H/n = wn(fl«szn-*—l

0.25
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0.1
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Im(z)

-0.05
-0.1
-0.15
-0.2
-0.25

~ / Lk
~0.25-0.2-0.15-0.1-005 0 0.05 0.1 0.15 02 0.25
Re(2)

The ground state energy density when 1 < §, <2 and ¢ = 1.5.
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This operator has a doubly degenerate 0-eigenvalue, whose
corresponding eigenspace, Vj,, is spanned by the states
o ®|n,)®|n,. ) ®|n, ) ® -+, with n; =0, 1, and
(conserved) total number n,, + n,.; + n,4, = 1.

Suppose now that |i(7)) is a superposition of {qﬁ;(”)},
the projections of the eigenstates of H’, onto V,, describ-
ing the kink at site n. Considering a time increment 6t
such that the kink moves at site n + 1 while the coherent
state representative point z changes to z + 0z = z + z0t,
Z‘;—Z =1, and using the defining properties of V,,
| (¢ + 81)) turns out to be a superposition of {d);c"“)},
describing the kink at site n + 1. Hence, for appropriate
initial conditions, the kink moves spontaneously from site
nton + 1, for all n. This proves that the system supports a
kinklike excitation propagating along the chain at constant
energy, once more as promised.

In conclusion.—We have proposed a quantum model for
a 1D chain of electrons and phonons, providing a self-
consistent description of Peierls distortion and showing
that the system is able to sustain soliton excitations. Key
features of our approach are the nonlinear coupling be-
tween electrons and phonons, which generalizes the SSH
model; the description of the phonon degrees of freedom in
coherent states, which permits a dynamical picture of the
phonons; and the subsequent restoring of the original
quantum dynamical symmetry. Further insight may be
gained in the future via a thorough analysis of the ground
state and of the soliton dynamics. This may open new
perspectives for the study and the application of solitons
in one-dimensional quantum systems. For instance, soli-
tons may be used as means of transferring quantum infor-
mation. Work is in progress along these lines.

C.M. is supported by EPSCR and Istituto Superiore
Mario Boella.
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