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We study the Mott transition in a frustrated Hubbard model with next-nearest neighbor hopping at

half-filling. The interplay between interaction, dimensionality, and geometric frustration closes the

one-dimensional Mott gap and gives rise to a metallic phase with Fermi surface pockets. We argue

that they emerge as a consequence of remnant one-dimensional umklapp scattering at the momenta with

vanishing interchain hopping matrix elements. In this pseudogap phase, enhanced d-wave pairing

correlations are driven by antiferromagnetic fluctuations. Within the adopted cluster dynamical

mean-field theory on the 8� 2 cluster and down to our lowest temperatures, the transition from one to

two dimensions is continuous.
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The relative importance of spatial versus local fluctua-
tions in the understanding of the Mott transition [1] can be
tuned with dimensionality. Starting from the high dimen-
sional limit, experimental studies on V2O3 indicate that
exactly as in a usual gas–liquid transition, the three-
dimensional bandwidth-controlled Mott transition be-
longs to the conventional Ising universality class: it is
a first-order transition below the critical endpoint at
Tc ’ 450 K and affects solely the charge sector [2]. In
contrast, Ising universality class has been ruled out in
two-dimensional (2D) organic salts �� ðBEDT-TTFÞ2X
(BEDT-TTF¼bisðethylenedithioÞtetrathiafulvalene, X¼
monovalentanion) with a much lower critical point Tc ’
40 K [3,4]. In this case geometric frustration, inherent to
the triangular lattice, strengthens spin fluctuations which
in turn affect the nature of the transition. The unconven-
tional character of the quantum criticality in ��
ðBED-TTTFÞ2X has been confirmed in recent numerical
simulations [5–7]. Moreover, enhanced spin fluctuations
and spatial correlations in the copper oxide planes offer a
natural framework which accounts for a depletion of low-
energy states in the pseudogap regime of the high-Tc

superconductors [8–10]. As for the one-dimensional
(1D) regime, it is dominated by spatial fluctuations [11].
The relevance of umklapp scattering for the half-filled
band leads to the absence of a bandwidth-controlled Mott
transition. However, a Mott transition can be triggered as
a function of dimensionality.

The aim of this Letter is to reexamine the dimensional-
crossover-driven Mott transition in the quasi-1D Hubbard
model at half-filling. The subject combines many fascinat-
ing issues such as the breakdown of spin-charge separation
and the binding of spinons into magnons [12]. These
phenomena follow from a delicate interplay between k
space and temporal fluctuations. To capture the relevant
physics, we employ a cluster extension of the dynamical
mean-field theory (CDMFT) [13]. In the CDMFT, a cluster
of Nc impurities is subject to a dynamical effective bath

simulating the effect of all the other sites of the lattice [14].
The ability of the CDMFT to reproduce the density-driven
Mott transition in the 1D Hubbard model has been dem-
onstrated in Refs. [15,16]. Previous CDMFT studies of the
dimensional-crossover-driven Mott transition in weakly
coupled 1D chains yielded ordinary open Fermi surface
(FS) in the Hubbard model [17] and small FS pockets in the
model of spinless fermions [18].
We study the Hubbard model on a strongly anisotropic

square lattice at half-filling,

H ¼ �X
ij;�

tijc
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i�cj� þU
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where the electron hopping tij is t (t?) on the intrachain

(interchain) bonds, � is the chemical potential, and we set
U=t ¼ 3. In addition, we allow for a finite diagonal next-
nearest neighbor hopping t0 ¼ �t?=4 (see Fig. 1). It brings
about frustration in the ground state and by reducing nesting
properties of the FS precludes long-range magnetic order in
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FIG. 1 (color online). (a) @F=@t? (squares) and susceptibility
of interchain charge fluctuations @2F=@t2? (scaled by a factor 0.1,

circles); (b) spin susceptibility �sðqÞ, and interaction vertex
contribution to the d-wave pairing susceptibility �v

p (multiplied

by 100) on the 8� 2 cluster. Inset shows the lattice geometry
of the Hamiltonian (1). Parameters: U=t ¼ 3, t0 ¼ �t?=4 and
T ¼ t=30.
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theT ¼ 0 andweak-coupling regime [19,20]. Hence, a finite
value of t0 guarantees the Mott transition in the thermody-
namic limit. We use the Hirsch–Fye quantum Monte Carlo
algorithm as a cluster-impurity solver and extend previous
studies [17] to a low-temperature regime. However, compu-
tational cost prevented us from decreasing the temperature
below T ¼ t=30 on the 8� 2 cluster [21]. The CDMFT
allows one to compute the single-particle spectral function
Aðk; !Þ ¼ � 1

� ImGðk; !Þ. Here Gðk; !Þ is the lattice

Green’s function represented in the original Brillouin zone.
We estimate the latter by periodizing the cluster Green’s
function and applying stochastic analytical continuation of
the quantum Monte Carlo data [22].

Our main results are summarized in Figs. 1 and 2. The
control parameter t? interpolates between one- and two-
dimensions and triggers the Mott transition at t?=t ’ 0:18.
To pin down the nature of the transition, continuous or first
order, we plot in Fig. 1(a)

@F

@t?
¼ 1

N

X
k�

@"k
@t?

hcyk�ck�i

with "k ¼ �2ðt coskx þ t? coskyÞ þ t? coskx cosky. Down

to the considered temperatures, we do not detect a jump and
thus conclude that the transition is continuous. @2F=@t2? in

Fig. 1(a) corresponds to an interchain charge susceptibility
that is greatly enhanced in the vicinity of the critical cou-
pling t?=t ¼ 0:18. The open warped Fermi lines which
form at sufficiently large t?=t > 0:24 (see Fig. 2) essentially
follow from the topology of the tight-binding model. In the
intermediate region, 0:18 � t?=t � 0:24, we find a metallic
phase where the FS is broken into electron and hole pockets.
On the one hand, starting from the 1D Mott insulating state,
the occurrence of the pockets might be understood by taking

the interchain hopping into account at the random-phase
approximation level [23]. In this context, the nodal points
k ¼ ð��=2;��=2Þ play a special role since @"k=@t? ¼ 0
there. On the other hand, starting from the large t? limit,
scattering off q1 ¼ ð�; 0Þ and/or q2 ¼ ð�;�Þ magnetic
fluctuations could equally gap out the hot spots, k ¼
ð��=2;��=2Þ. To provide support for this scenario, we
plot in Fig. 1(b) the cluster spin susceptibility

�sðqÞ ¼ 1

Nc

Z �

0
d�

X
ij

eiqði�jÞhSið�ÞSjð0Þi

for both momenta. As apparent, 1D fluctuations q1 ¼ ð�; 0Þ
remain robust up to t?=t ¼ 0:16 but are then gradually
suppressed, giving way to dominant q2 ¼ ð�;�Þ fluctua-
tions, which peak at the Mott transition. Let us however note
that in the static mean-field limit, antiferromagnetic order is
not sufficient to reproduce the observed FS topology point-
ing towards the remnant 1D umklapp scattering at the nodal
momenta as the origin of the pockets.
Enhanced staggered magnetic fluctuations / �sð�;�Þ

give rise to pairing with a d-wave character �y
i ð�Þ ¼

� 1ffiffi
2

p ½cyi"ð�Þcyiþ�#ð�Þ � cyi#ð�Þcyiþ�"ð�Þ�with the upper (lower)
sign corresponding to � ¼ axðayÞ, respectively. The re-

sponse of the system in the particle–particle channel is
best seen in the pairing interaction vertex �v

p [24]. It is

obtained from the full pairing susceptibility �p ¼
1
Nc

R�
0 d�

P
ijh�y

i ð�Þ�jð0Þi by subtracting the uncorrelated

contribution. As shown in Fig. 1(b), the calculated pairing
vertex �v

p is enhanced at the Mott transition, which confirms

the magnetic-pairing scenario.
The schematic evolution of the FS surface shown in

Fig. 2(a) stems from the calculation of the single-particle
Green’s function. In Fig. 3, we show the dimensional-
crossover-driven Mott transition as seen in the evolution
of the single-particle spectral function Aðk; !Þ. Most note-
worthy features in the 1D limit shown in Figs. 3(a) and 3(b)
are, (i) a well-defined single-particle gap at k ¼ ð�=2; 0Þ
and equivalent points, (ii) signatures of spinon and holon
branches especially in the vicinity of k ¼ ð0; 0Þ [25], and
(iii) backfolding of the energy bands around k ¼ ð�=2; 0Þ
and the equivalent points. Concerning (ii), when t?=t ¼
0:15 the intensity of the spinon excitation is already notice-
ably reduced but nevertheless one can distinguish two
peaks, see Supplemental Material [26]. As shown in Figs. 3
(c) and 3(d), they are superseded by a single peak with a
broad shoulder at the Mott transition. Finally, a broad
quasiparticle (QP) peak is resolved at t?=t ¼ 0:2 [26].
This remnant aspect of the 1D physics is captured in
approaches starting from a fractionalized spectral function
in the 1D limit and treating the interchain hopping at the
random-phase approximation level [23,27]. As for (iii), the
pocket emerges when one of the backfolded bands inter-
sects the Fermi energy. This defines a main and ghost
side of the pocket which we can characterize with the

FIG. 2 (color online). (a) Schematic evolution of the FS. The
emergent FS forms electron pockets around k ¼ ð��=2; 0Þ and
hole pockets around k ¼ ð��=2;��Þ. The pockets have aniso-
tropic distribution of the spectral weight between the main (solid
lines) and ghost (dashed lines) vertical segments. The anisotropy
and pockets’ size grow until t?=t ¼ 0:25 when the ghost seg-
ments vanish and the main ones merge into the open FS of a
quasi-1D metal (bold lines). The QP weight retains a strong k
dependence with a minimum at hot spots (dots). (b) QP weight
Zk on the main and ghost sides of the electron (squares) and hole
(circles) pockets.

PRL 109, 126404 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

21 SEPTEMBER 2012

126404-2



magnitude of the QP residue Zk. We extract this quantity
by fitting the data to the Lorentzian form

Aðk; !Þ ’ 1

�

Zk�k

ð!� "k þ�Þ2 þ �2
k

and plot it in Fig. 2(b). At the exception of Mott transition
at t?=t ¼ 0:18 where the pockets shrink and become very
thin, strong anisotropy along the pockets is evident. We
illustrate this in Fig. 4 by showing the low-frequency part
of Aðk; !Þ across the pockets at t?=t ¼ 0:2. The two
features—one with a large and the second one with a small
QP weight crossing the Fermi level—are part of the elec-
tron [Fig. 4(a)] and hole [Fig. 4(b)] pockets. The broken

FS is unrelated to a specific ladder geometry of the 8� 2
cluster, and it is also found on the square 4� 4 cluster [26].
The reconstruction of the FS is governed by the topology

of the real part of the zero-frequency Green’s function
Gðk; 0Þ [28–30]. In the Fermi liquid theory, Gðk; 0Þ is
positive (negative) inside (outside) the FS, respectively,
and changes sign by going through a pole. This contrasts
with the Mott insulator in which Gðk; 0Þ changes sign in
momentum space passing through a zero as a result of a
diverging lattice self-energy�ðk; i!mÞ. We extract the latter
from the Dyson’s equation G�1ðk; i!mÞ ¼ G�1

0 ðk; i!mÞ �
�ðk; i!mÞ, where G0ðk; i!mÞ is the bare Green’s function,
in combination with the spectral representation of the lattice
Green’s function Gðk; i!mÞ ¼

R
d!½Aðk; !Þ=ði!m �!Þ�.

The diverging behavior of �ðk; i!mÞ at momentum k ¼
ð�=2; 0Þ in the Mott phase is shown in Fig. 5(a). It is the
coexistence of infinities and zeros which accounts for the
anisotropy of the emergent pockets. We focus on the elec-
tron pocket and illustrate this in Fig. 5(b) for t?=t ¼ 0:18.
On the one hand, in close vicinity of the C point with a
vanishing �ðk; i!m ! 0Þ, two adjacent poles of Gðk; 0Þ
result in a very thin electron pocket. On the other hand,
diverging �ðk; i!m ! 0Þ yields a zero of Gðk; 0Þ at the A
point. The latter reduces the QP weight of the nearby ghost
side. The interference of the neighboring pole and zero
becomes stronger with growing t? and prevented us from
resolving the full structure ofGðk; 0Þ, already at t?=t ¼ 0:2.
Indeed, at our lowest temperature T ¼ t=30, only a pole
associated with the main side of the pocket and a broad
minimum in Gðk; 0Þ is observed in Fig. 5(b). However, as
depicted in Fig. 4(a), the ghost side remains visible in the
spectral function. In analogy with the density-driven Mott
transition in the 2D Hubbard model [28,29], we believe that
the emergence of a large FS above t?=t ¼ 0:24 corresponds
to a simultaneous annihilation of the adjacent zero and pole
leaving the pole carrying a larger QP weight.

FIG. 3 (color online). Dimensional-crossover-driven Mott
transition as seen in the single-particle spectral function
Aðk; !Þ: (a, b) t? ¼ 0 and (c, d) t?=t ¼ 0:18. In panel (b), the
spinon (holon) branch corresponds to the lower (higher) binding-
energy peak, respectively.
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FIG. 4 (color online). Low-energy part of the spectral function
Aðk; !Þ at t?=t ¼ 0:2. Vertical bars track the position of the
peaks constituting (a) electron and (b) hole FS pockets.
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FIG. 5 (color online). Real part of the zero-frequency Green’s
function around momentum k ¼ ð�=2; 0Þ in the (a) insulating
Mott phase and (b) metallic phase. Insets show the low-
frequency imaginary part of the self-energy at k ¼ ð�=2; 0Þ in
panel (a) and k indicated by the capital letters in panel (b).
Gðk; 0Þ for t?=t ¼ 0:2 was rescaled by 0.5.
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We turn now to the nodal direction of the Brillouin zone.
Figure 6 reveals that Gðk; 0Þ remains almost unchanged
with respect to the 1D regime up to the k-selective Mott
transition at t?=t ¼ 0:18. This agrees with (i) the behavior
of �ðk; i!m ! 0Þ at k ¼ ð�=2; �=2Þ, which we expect to
diverge in the T ! 0 limit up to t?=t ¼ 0:2, and (ii) the
gap seen in Aðk; !Þ. On further increasing t?, Gðk; 0Þ
develops a polelike feature. As a result, a broad QP peak
emerges at t?=t ¼ 0:25. Its weight is much smaller than
that at kF along the ð0; 0Þ-ð�; 0Þ direction included for
comparison in Fig. 6. The substantial variation in the
scattering rate is a precursory indication of the broken FS
at smaller t?.

Let us expand briefly on a relationship of our results with
real materials such as quasi-1D organic (TM)2X salts
where TM stands for TMTTF (tetramethyltetrathiafulva-
lene) or its selena TMTSF analogue [31]. Their unified
phase diagram bears similarities to that of the high-Tc

cuprates in the sense that as a function of pressure a super-
conducting phase emerges in the proximity of the insulat-
ing Mott phase. The inclusion of a finite t0 in our studies
mimics the unnesting role of pressure. As we show, cross-
ing over from the 1D system to a higher-dimensional
regime involves recombination of spinons and holons
into the conventional QPs and releases the charge from
the confinement to the 1D chains. The pressure-induced
change in the optical spectroscopy data on (TMTTF)2X is
interpreted as an example of such a charge deconfinement
[32,33]. A quantitative comparison would involve studies
within a model Hamiltonian extended by electron–phonon
coupling and long-range Coulomb interaction to account
for a wide variety of phase transitions observed in the
(TM)2X families. Nevertheless, we find it encouraging
that our CDMFT studies within the bare Hubbard model

of Eq. (1) support accumulating experimental evidence that
superconductivity in the (TMTSF)2X salts is mainly me-
diated by magnetic fluctuations [34]. Finally, the signatures
of the closed FS contours that we find could be verified in
quantum oscillation experiments.
In summary, our CDMFT simulations yield a continuous

quantum phase transition between a 1D Mott insulating
state and a 2D metallic state. On the metallic side, the
coherence temperature below which QPs form marks the
crossover scale and vanishes at the critical point. At energy
scales below the coherence temperature and in the close
vicinity of the transition point, the FS topology shows hole
and electron pockets. We attribute their origin to the rem-
nant 1D umklapp scattering at the nodal momenta. Such a
mechanism can also account for the pockets observed in
the spinless model [18]. The evolution of the pockets with
t? can be understood by tracking the zero and poles of the
single-particle Green’s function. At energy scales above
the coherence temperature, remnant features of spin-
charge separation are apparent in the single-particle spec-
tral function. At the two-particle level, the metallic state is
characterized by enhanced antiferromagnetic fluctuations
in the very close vicinity of the critical point. These mag-
netic fluctuations act as a glue for paring correlations with
a d-wave character. On the insulating side, the crossover
scale is set by the Mott gap. Below this energy scale we
observe robust 1D Mott physics: aspects of spin-charge
separation are visible both in the spectral function and in
ð�; 0Þ magnetic fluctuations which remain intact. Further
work aimed at investigating the finite temperature conse-
quences of this quantum critical point is presently under
progress.
We acknowledge support from DFG Grant No. AS120/
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