
Marginal Stability Constrains Force and Pair Distributions at Random Close Packing

Matthieu Wyart

Center for Soft Matter Research, New York University, 4 Washington Place, New York, New York 10003, USA
(Received 29 January 2012; published 18 September 2012)

The requirement that packings of frictionless hard spheres, arguably the simplest structural glass,

cannot be compressed by rearranging their network of contacts is shown to yield a new constraint on their

microscopic structure. This constraint takes the form a bound between the distribution of contact forces

PðfÞ and the pair distribution function gðrÞ: if PðfÞ � f� and gðrÞ � ðr� �0Þ��, where �0 is the particle

diameter, one finds that � � 1=ð2þ �Þ. This bound plays a role similar to those found in some glassy

materials with long-range interactions, such as the Coulomb gap in Anderson insulators or the distribution

of local fields in mean-field spin glasses. There are grounds to believe that this bound is saturated, yielding

a mechanism to explain the avalanches of rearrangements with power-law statistics that govern plastic

flow in packings.
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Amorphous materials are perhaps the simplest example
of glasses, in which the dynamics are so slow that thermal
equilibrium cannot be reached. In these systems, properties
are history dependent, and configurations of equal energy
are not equiprobable. What principles then govern which
part of the configuration space is explored, for example,
when a pile of sand is prepared? One approach was pro-
posed by Edwards in the context of granular matter [1] and
is based on the hypothesis that all mechanically stable
states are equiprobable. Another line of thought assumes
that the configurations generated by the dynamics are
linearly stable but only marginally [2,3]: the microscopic
structure is such that soft elastic modes are present at
vanishingly small frequencies. This view can explain
[2–4], in particular, the singularities occurring in the coor-
dination number and in the elasticity of amorphous solids
made of repulsive particles near the unjamming threshold
[5–7] where rigidity disappears. Despite these successes,
the hypothesis of linear marginal stability yields an incom-
plete insight on the nonlinear processes occurring in amor-
phous materials, which are critical to understand plasticity,
thermal activation, or granular flows [7,8]. When interac-
tions are short range, one key source of nonlinearity is the
creation or destruction of contacts between particles [9,10].
Combe and Roux have observed numerically [9] that such
rearrangements occur intermittently, in bursts or ava-
lanches whose size is power-law distributed, a kind of
dynamics referred to as crackling noise [11].

Interestingly, some glassy systems with long-range in-
teractions display such dynamics, in particular Coulomb
glasses [12] and mean-field spin glasses [13]. In both cases,
the requirement of stability toward discrete excitations
(flipping two spins or moving one electron) leads to bounds
on important physical quantities: Efros and Shklovskii
showed that the density of states in a Coulomb glass
must vanish at the Fermi energy [14], implying the pres-
ence of the so-called Coulomb gap. Thouless et al. [15]

demonstrated for mean-field spin glasses that the distribu-
tion of local fields must vanish at least linearly at low
fields. In these systems, the near saturation of the stability
bound strongly affect physical properties and is responsible
for the crackling noise.
In this Letter, I argue that the same scenario holds in

packings of hard frictionless spheres. I derive a stability
bound toward discrete excitations, associated with the
opening and the closing of contacts. This bound constrains
the pair distribution function gðrÞ and the distribution PðfÞ
of the magnitude of contact forces f between particles. The
presence of weak forces is found to destabilize the system,
whereas the abundance of pairs of particles that are very
close to each other but not touching stabilizes it. If�0 is the
particle diameter and gðrÞ and PðfÞ are assumed to obey
power laws, gðrÞ � ðr� �0Þ�� and PðfÞ � f�, I find that
stability implies � � 1=ð2þ �Þ.
There are grounds to believe that generic contact net-

works of amorphous frictionless spheres are marginally
stable, as previous observations, although incomplete, are
consistent with the saturation of this bound. Marginality
toward avalanches of contact changes may thus be the
principle governing phase space exploration in the simplest
amorphous solid. These results build a link between struc-
tural glasses and glasses with frozen disorder [16,17]
where theoretical progress on avalanches has recently
been made [18], thus providing a handle to investigate
the rewiring of the contact network, a very hard question
of key importance for flow and plasticity. Finally, these
results lead to a novel perspective on the microscopic
structure of packings and suggest in particular that the
much studied distribution of force [19] is controlled by
subtle correlations in the structure associated with network
stability that are not included in previous theoretical
descriptions [19,20].
I consider a packing of N hard frictionless particles

of diameter �0, in spatial dimension d. The packing is
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contained in a cubic box of variable volume V made of
rigid walls and is formed by pushing particles together by
reducing the box size so as to apply a specified pressure p.

Microscopically, the boundaries apply external forces ~Fi

on all the particles i in contact with it. Mechanical stability
requires that no floppy modes exist apart from global
translations and rotations. Floppy modes are collective
motions of the degrees of freedom of the system (that
include the Nd degrees of freedom of the particles and
changes in the box size) for which the distances between
objects in contact (including both particles and the box) are
fixed. If such a mode existed, the system would flow along
it. Rapidly quenched or polydisperse packings of hard
frictionless spherical particles are isostatic [3,5,7,21–23]:
the average number of contacts between particles, the
coordination number z, is just sufficient to guarantee
mechanical stability and to avoid the presence of floppy
modes, corresponding to z ¼ zc ¼ 2d. It can be shown that
for any finite polydispersity, this condition is necessary to
ensure no overlaps between particles [21–23].

In an isostatic system, the removal of any contact leads
to the creation of one floppy mode. Floppy modes can be
generated as follows: two particles 1 and 2, forming a
contact labeled h12i, are pushed apart while all the other

contacts remain closed. I denote by � ~Rh12i
i ðsÞ the displace-

ment of particle i following the opening of the contact h12i
by a distance s. This displacement field is uniquely defined
because only one floppy mode appears when a contact is
broken and exists for s sufficiently small so as to ensure
that no new contacts are formed in the system. Below,
I shall make the four assumptions (a)–(d) on floppy modes
in random packings of frictionless spheres. (a) Floppy
modes extend in general in the entire system and displace
an extensive number of particles, as observed numerically
[24]. If

Bkl ¼ lim
s!0

X
i

½� ~Rhkli
i ðsÞ�2=ðNs2Þ; (1)

then B ¼ limN!1hBkli> 0, where the average is made on
all contacts. Note that this property does not hold for soft
compressed particles for which z > zc: in that case, the
response to a local strain decays with distance as a power
law in the far field, as expected from elasticity. However,
under decompression z ! zc, and the response becomes
more and more extended [25]. Theoretically it can be
shown that when z� zc � 1=N, pushing two particles
apart leads to displacements whose amplitude do not decay
with distance [3], strongly supporting that this result holds
for floppy modes when z ¼ zc. (b) The argument below
focuses on floppy mode associated with contacts carrying a
weak force. Although limN!1hBkli> 0 for a typical con-
tact, it might not hold for the weakest contacts, and we may
assume more generally that BðfÞ � hBklif � f�, where the

average is on all contact hkli whose force is f. I shall
present the argument for the simplest assumption � ¼ 0,

the extension to finite � is straightforward and reported
below. (c) For a floppy mode, the relative displacement
between two adjacent particles is of order of the displace-
ment of either particle. This property was checked numeri-
cally for the lowest-frequency modes of isostatic packings
of soft particles [2] and is supported by the following
argument. In a compressed packing of soft particles with
z > zc, if two particles are moved apart, property (c) is true
only for particles close to the chosen pair and violated in
the far field where the strain becomes much smaller than
the displacement. According to hypothesis (a), however,
the properties of the displacement field of a floppy mode
are independent from the distance to the chosen pair,
supporting that relative and absolute displacements are
comparable in the entire system. (d) The response to a
force dipole of amplitude F applied on two noncontacting
particles extends to the entire system. In particular, the
resulting change of amplitude of contact forces between
particles is of order F everywhere. This property can be
derived formally from properties (a) and (c) [26], using the
existence of a duality between floppy modes and force
propagation [22,27] and is supported by numerics [25].
A packing of hard particles has an infinite energy if

particles overlap and no energy otherwise. We shall focus
on nonoverlapping configurations, where the relevant
energy is simply pV, which is finite. I shall argue that
the stability of a packing against compression leads to
constraints on the packing geometry. Consider the floppy

mode � ~Rh12i
i ðsÞ. The constraint that the change of distance

�rhiji between particles in contact is null, except for the

contact h12i, can be expressed at the second order using
Pythagoras theorem as

8hiji � h12i;
�rhiji ¼ ½� ~Rh12i

j ðsÞ � � ~Rh12i
i ðsÞ� � ~nhiji

þ f½� ~Rh12i
j ðsÞ � � ~Rh12i

i ðsÞ� � ~n?hijig2
2�0

þ oðs2Þ ¼ 0;

(2)

where ~nhiji is the unit vector going from i to j in the initial

configuration, and the notation � ~n?hiji indicates the projec-

tion onto the space orthogonal to ~nhiji.
We now compute the change of volume associated with

the displacement field � ~Rh12i
i ðsÞ. Force balance in the

unperturbed state can be written

8i; ~Fi �
X
jðiÞ

fhiji ~nhiji ¼ 0; (3)

where the sum is on all particles jðiÞ in contact with i, ~Fi is
the force exerted by the wall on particle i (and is thus zero
for most of the particles), and fhiji > 0 is the magnitude of

the force in the contact hiji. Multiplying Eq. (3) by any
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displacement field � ~Ri and summing on all particles leads
to the virtual work theorem

X
i

~Fi � � ~Ri þ
X
hiji

ð� ~Rj � � ~RiÞ � ~nhijifhiji ¼ 0; (4)

where the second sum is made on all contacts. In our
system, external forces only stem from the boundaries,

and the associated work is
P

i
~Fi � � ~Ri ¼ �p�V. Using

this result, together with Eq. (2) and (4) applied to the

floppy mode � ~Rh12i
i ðsÞ, one obtains

p�VðsÞ ¼ sfh12i � Cþ oðs2Þ; (5)

where

C ¼ X
hiji�h12i

fhiji
f½� ~Rh12i

j ðsÞ � � ~Rh12i
i ðsÞ� � ~n?hijig2

�0

: (6)

According to the properties (a) and (c), f½� ~Rh12i
j ðsÞ �

� ~Rh12i
i ðsÞ� � ~n?hijig2 � s2. Thus, C ¼ s2ANhfi=�0, where

hfi is the average contact force and A is a constant of order
one. Eq. (5) becomes

p�VðsÞ ¼ sfh12i � ANhfis2
�0

þ oðs2Þ: (7)

Eq. (7) is plotted in Fig. 1. Since the interparticle potential
is purely repulsive, fh12i > 0 for all h12i, implying that for

sufficiently small s opening a contact always increases V.
However, the quadratic term is always destabilizing. A
denser state will thus be generated if the contact h12i can
be opened up to a distance s > s� without a new contact
being formed, with

s� � fh12i
hfi

�0

N
; (8)

as indicated in the right panel of Fig. 1. The initial
configuration is stable, however, if a new contact is formed
at some sc < s�, as motion along the floppy mode beyond
sc is then forbidden.
According to Eq. (7), the most stringent constraint on

stability corresponds to the opening of contacts with the
weakest forces. I assume that the distribution of contact
force PðfÞ follows PðfÞ � f�=hfi�þ1 at low forces, where
the term hfi�þ1 ensures proper normalization. I define the
typical smallest contact force fmin in a system with Nc �
zN=2 ¼ Nd contacts as the force magnitude for which
there is in average one smaller contact force in the system,

Z fmin

0
PðfÞdf � 1=Nc � 1=N; (9)

leading to fmin � hfiN�1=ð1þ�Þ. This estimation assumes
that forces can be treated as independent variables, which
I expect to be approximatively true. Using this force in
Eq. (8), which applies to contact with low forces according
to (b), one finds that it is sufficient to open the contact with
the weakest contact force by an amount s�min that satisfies

s�min=�0 � fmin

Nhfi � N�ð2þ�Þ=ð1þ�Þ (10)

to generate a denser packing.
In a stable packing, a new contact must be formed for

some sc < s�min. We now estimate the value of sc in terms of

the pair distribution function gðrÞ. The first contact to form
will correspond to particles that were almost touching in
the initial configuration (s ¼ 0). We denote by hmin the
typical smallest separation between particles that are not
in contact. According to properties (a)–(c), the relative
motion of nearby particles in a floppy mode is of order s.
Thus, the first contact will be formed for sc � hmin, which
can be expressed in terms of the pair distribution function

Z �0þhmin

�0

gðrÞdr � 1=Nc � 1=N: (11)

Assuming that gðrÞ � ðr� �0Þ��, one finds that sc=�0 �
hmin=�0 � N�1=ð1��Þ.
The stability condition sc < s�min thus implies that

N�1=ð1��Þ <N�ð2þ�Þ=ð1þ�Þ, or equivalently

� � 1

2þ �
; (12)

which is my main result. For � � 0, the same argument
leads to � � ð1� �=2Þ=ð2þ �� �=2Þ.
I now show that if the inequality (12) is violated, open-

ing the contact with one of the smallest contact forces
would lead to a giant avalanche that restructures an exten-
sive number of contacts in the system. Let us denote by
h34i the contact that closes at s ¼ sc. I seek to estimate
the contact force fh34i that appears in this contact when

it closes. By symmetry, all the results we have derived

FIG. 1 (color online). Energy change p�V after opening a
contact h12i by a distance s. sc indicates the distance at which
a new contact is formed, and motion along the considered floppy
mode becomes impossible. If sc < s� (left), no denser state can
be obtained by opening the contact h12i (note, however, that a
looser but still metastable configuration can be obtained if sc is
larger than the distance smax at which p�V is a maximum). If
sc > s� (right), a denser, more stable state can be generated.
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when the contact h12i was opened and h34i was closed
also apply to the newly obtained configuration if
h34i is reopened and h12i is reclosed. In particular, the
relation fh12i ¼ @½p�VðsÞ�=@sjs¼0 becomes fh34i ¼
@½p�Vðs0Þ�=@s0js0¼0, where s0 is the distance by which
the contact h34i is opened. One has @s0=@s � �D, where
D is a positive constant of order one by symmetry. Thus,
fh34i is readily obtained by differentiating Eq. (7) at sc
and leads to

fh34i ¼ D

�
ANhfisc

�0

� fh12i
�
: (13)

Using Eqs. (10) and (13) in the case where h12i is the
weakest contact, i.e., fh12i ¼ fmin, one sees that the viola-

tion of inequality (12), which implies sc � s�min, leads to

the condition fh34i � fmin.

I now argue that the creation of a new contact with a
force much larger than the typical minimal forces fmin can
trigger an avalanche of infinite size in the thermodynamic
limit. Closing the contact h34i is equivalent to imposing an
external dipole of forces—just before they touch—on the
two particles 3 and 4 forming this contact of magnitude
~F3 ¼ � ~F4 ¼ fh34i ~n34. The response to such a force dipole,
according to property (d), changes the contact forces
throughout the system by some random amount of order
fh34i. Since fh34i is much larger than the smallest forces in

the system, many contact forces become negative when
the contact h34i is formed. A negative contact force would
correspond, in the representation of Fig. 1, to a negative
slope at s ¼ 0, leading to an instability where the contact
opens. The opening of these contacts will lead in turn to
new contacts forming, themselves generating some signifi-
cant noise in the values of contact forces, and triggering
new openings of contact. Under the assumptions that gaps
and forces are independent variables, such a dynamical
process can stop only when inequality (12) is satisfied,
requiring an extensive rearrangements of contacts. It is
likely that something of this sort takes place each time a
packing of hard particles is prepared.

Discussion.—Imposing the stability of the contact
network leads to an inequality between the distribution of
forces and the pair distribution function in packings,
Eq. (12). In glasses with long-range interactions, such a
stability bound exists, it is saturated in both the equilibrium
state [15] and in nonequilibrated configurations [28,29] in
spin glasses and nearly saturated in the Coulomb glass
[30,31]. In the case of random close packings, thermal
equilibrium is not achieved, and the exponents � and �
may depend on the system preparation. Empirically, for
isotropic packings obtained via decompression of soft
particles it is found that � 	 1=2 [32,33], whereas for
packings obtained via compression of thermal hard parti-
cles � 	 0:4 [34] (in the latter measurement, however,
rattlers, corresponding to a few percent of the particles
that are not jammed, were not taken into account).

On the other hand, PðfÞ has been extensively studied in
the granular matter literature but with little precision at low
force. One accurate measurement of � was made in aniso-
tropic jammed packings [35] (where the present argument
should also hold) and yields � ¼ 0:2. � was not measured
in that case, however, and the saturation of Eq. (12) would
correspond to � ¼ 0:44, a value similar to what is observed
in isotropic packings. Thus, the existing measurements are
consistent with the nonlinear marginal stability of pack-
ings, although more accurate observations are crucial to
test this hypothesis.
Furthermore, marginal stability is a natural explanation

for the observation that the response to an applied shear
stress displays jumps of strain ��, which follow a distri-
bution Pð��Þ � ���1:46 [9]. Such power-law behavior in-
dicates that the the contact network is critical. Criticality
can be obtained by fine-tuning parameters, such as in the
mean-field ferromagnet in random field [36] (whose
exponent 3=2 is interestingly close to the present one) or
via some kind of self-organized criticality. The marginal
stability proposed here is consistent with the second
scenario. Along this line of thought, when a packing is
formed the dynamics consist of large avalanches of con-
tacts rearrangements. When extensive avalanches are not
possible anymore, the dynamics stop rapidly, ensuring that
the system remains close to critical state where the packing
is marginal. This scenario could be checked numerically
by opening the weakest contacts of packings, in order to
test for the presence of avalanches potentially leading to
denser packings.
Finally, I have focused on hard frictionless spherical

particles, which can describe accurately emulsions [37].
Often, however, these assumptions do not apply: in granu-
lar matter, particles are not perfectly spherical, there is
friction, and particles can be deformed to some extent.
These features move the system away from isostaticity;
for example, elliptic particles are hypostatic and present
floppy modes [38,39], whereas friction or softness make
the system hyperstatic. In both cases, one expect these
systems to behave like isostatic ones below a length scale
l� that diverges near isostaticity [40], suggesting that the
proposed description of the contact network dynamics
applies on this mesoscopic length scale. One challenge
for the future is to connect the present approach to long
wavelength phenomena, for example, the emergence of
avalanches of localized plastic events in soft glasses or
the apparition of shear bands in granular matter.
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