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Recently, there has been much interest in simulating quantum field theory effects of matter and gauge

fields. In a recent work, a method for simulating compact quantum electrodynamics (CQED) using Bose-

Einstein condensates has been suggested. We suggest an alternative approach, which relies on single

atoms in an optical lattice, carrying 2lþ 1 internal levels, which converges rapidly to CQED as

l increases. That enables the simulation of CQED in 2þ 1 dimensions in both the weak and the strong

coupling regimes, hence, allowing us to probe confinement as well as other nonperturbative effects of the

theory. We provide an explicit construction for the case l ¼ 1 which is sufficient for simulating the effect

of confinement between two external static charges.
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Dynamic gauge theories are at the core of the standard
model of particle physics, playing the role of the force
carriers among thematter fields, and therefore are of particu-
lar significance. Itwas shown, using lattice gaugemodels and
other methods, that such gauge theories exhibit the peculiar
phenomenon of confinement of charges which is related to
nonperturbative effects due to nonlinear interactions in
the theory [1–3]. Such lattice gauge theories are believed to
have a nontrivial phase structure. The simplest such theory is
compact quantum electrodynamics (CQED)—a U(1) lattice
gauge theory, which is believed to manifest, in 3þ 1 dimen-
sions, a phase transition between the confining phase (for
large coupling constant g) and the nonconfining Coulomb
phase (for small coupling), while in 2þ 1 dimensions it was
shown that the theory confines also in the weak coupling
regime because of nonperturbative effects [1–6]. In non-
Abelian Yang-Mills theories, it is believed that confinement
holds for all values of the coupling constants.

Recently there has been much interest in quantum simu-
lations of quantum field theories by utilizing methods in
ultracold atoms and other systems [7]. Models have been
suggested for simulating dynamical matter fields [8–10],
and exotic phenomena manifested by such fields have
been discussed [11–13]. However, less progress has been
achieved for dynamic Abelian and non-Abelian gauge theo-
ries. Dynamic gauge theories involving spin-half states have
been discussed in Refs. [14,15]. Because the electric fields
in such models can obtain only two values, such models are
unable to manifest the effect of electric flux tubes (but rather
of different ‘‘strings’’). Coloumb phase simulations have
been suggested with molecular states [16], and Bose-
Einstein condensates (BECs) in optical lattices [17].

In a recent work [18], we have obtained, using BECs in an
optical lattice, an effective theory of a dynamic U(1) gauge
theory, manifesting confinement of external static charges,

with observable electric flux tubes. In this Letter, we suggest
an alternative approach for simulating gauge theories in
terms of a spin-gauge (SG) Hamiltonian Hl [defined in
Eq. (1)], which describes interacting single atoms with
internal levels playing the role of angular momentum mul-
tiplet �l � m � l, instead of BECs as [18]. We will show
that for large values of l the SG Hamiltonian rapidly con-
verges to the standard Abelian Kogut-Susskind model [2,19]
of CQED for both the weak and strong coupling regimes.
Hence, this model is able to simulate the effect of confine-
ment as well as nonperturbative effects in the weak coupling
regime, which give rise to it in 2þ 1 dimensions. As a first
step in realizing the models Hl we shall propose a method
for constructing the case l ¼ 1 which is sufficient for ob-
serving the effect of confinement of static charges in the
strong regime. First, using the methods of Ref. [20], we
construct an effective ‘‘generalized XXZ’’ model. Then,
adapting the ideas of Ref. [18], the gauge invariance is
introduced to the system with a second effective calculation.
The single atoms implementation might be easier experi-
mentally than the BEC approach, as it does not rely on the
overlaps of local single-particle wave functions and thus the
energy scales in the Hamiltonian may be larger. Moreover,
only three atomic species are required, and they can popu-
late every link, unlike in the BEC model.
Let us consider a 2D square lattice with single atoms

which carry 2lþ 1 internal states, located on the links and
described by the SG Hamiltonian:

Hl ¼ g2
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where n’s are the vertices of the lattice, k ¼ 1, 2 are the

lattice directions, whose corresponding unit vectors are 1̂,

2̂. For example, Lk
zn is the z component of the spin on the

link emanating from the vertex n in the kth direction (the
generalization to a 3D lattice is straightforward), and g is a
constant. This should be compared to the Abelian Kogut-

Susskind Hamiltonian [2,19] HKS ¼ g2

2

P
n;kðEk

nÞ2 �
1
g2
P

n cosð�1
n þ�2

nþ1̂
��1

nþ2̂
��2

nÞ. Unlike the Kogut-

Susskind Hamiltonian, in our case we are dealing with
3D angular momentum operators. Nevertheless, for large
values of l, the first quadratic term in the Hamiltonian
coincides with the electric part of the Abelian Kogut-
Susskind Hamiltonian, with the z components of the an-
gular momentum playing the role of an electric field E,
and the second, quartic part with the magnetic part of the
Kogut-Susskind Hamiltonian. This can be seen qualita-
tively when considering the matrix elements of jmj � l,

for which L�ffiffiffiffiffiffiffiffiffiffi
lðlþ1Þ

p jl; mi � jl; m� 1i, similar to e�i�jmi ¼
jm� 1i in the Kogut-Susskind model. We shall test this
equivalence quantitatively for the case of a single
plaquette (Fig. 1).

For every l, the SG Hamiltonian manifests a local
U(1) gauge symmetry, that is generated by the local
operators (defined on the vertices of the lattice) Gn ¼P

k 4k L
k
zn (where 4kfn ¼ fnþk̂ � fn) which commute

with the Hamiltonian: for a given vertex, Gn trivially
commutes with all the plaquettes which do not
contain n. As for the other four plaquettes, the

commutation relation is zero, because ½Lz; L�� ¼ �L�.
For example, ½Gn; L

1þ;nL
2
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L2�;n ¼ 0. Static external charges

jfQngi are introduced to the system by fixing a subspace
by the constraint GnjfQngi ¼ QnjfQngi.
In order to have something useful for simulations, we

would like to have thatHl ! HKS for large l’s, sufficiently
fast. Thus, we shall consider a comparison between the SG
Hamiltonian with a constant l and a truncated version of
the Kogut-Susskind Hamiltonian with �l � E � l. It is
straightforward to see, using perturbation theory in g�1,
that in the strong limit of the Hamiltonian (g � 1), the
ground states of the SG and Kogut-Susskind Hamiltonians
coincide up to a certain order in the perturbative expansion,
depending on l and the charge distribution. On the other
hand, in the weak coupling limit, we shall examine the
effect of truncation in a nonperturbative manner, for a
single plaquette system.
Case of a single plaquette.—Consider a single plaquette

with two opposite unit static charges in the lower vertices
[see Fig. 1(c)]. Using the gauge invariance and Gauss’s
law, a possible gauge-invariant basis of states is jmi �
jm;m� 1; 1�m; 1�mi (m ¼ �lþ 1; . . . ; l) where
these are the eigenvalues of the electric field on each
link, from the lower one, counterclockwise. Relying upon
the results of Drell et al. in Ref. [5], the ground state of
this system, for weak coupling, is given by a Bloch-like

wave function in the tight-binding limit �ð�Þ ¼P1
n¼�1 eðin�=2Þe�1=4g2ð��2�nÞ2 , where � is the magnetic

field in the plaquette. On the link connecting the charges,

hE1i ¼ 3
4 þ �

g4
ð�2�4

2 Þe��2=2g2 . This can be understood as the

contributions of two parts: One is the trivial contribution of
the longitudinal, classical, static Coulomb field ( 34 ). The

second part is much more interesting: it is nonanalytic in
g ¼ 0 and therefore it is nonperturbative in g. It is this type
of mechanism that is responsible for confinement in the
weak regime in large 2D spatial lattices. In Fig. 1(a), hE1i is
plotted as a function of g—both for the truncated Kogut-
Susskind Hamiltonian and the SG Hamiltonian for several
values of l, and the analytic result of Ref. [5] as well. For
g < 1, the truncated and SG results coincide with each
other and with the analytical approximation for l � 2, 3.
For large values of g, the flux-tube value of 1 is reached
already for l ¼ 1.
In order to understand the effect of truncation, we ex-

pand this state in the m basis—j�i ¼ P1
m¼�1 amjmi ¼P1

m¼�1 e�g2ðm�3=4Þ2 jmi, and take only �lþ 1 � m � l.
As a measure of the accuracy of truncation, we calculate
the probability to be in the truncated subspace: PlðgÞ ¼
1

h�j�i
P

l
m¼�lþ1 jamj2 as one can see in Fig. 1(b), this func-

tion approaches a value of 1 quickly even for small finite
l’s, which means that the truncated theory still shows the
same effect for small g’s.

FIG. 1 (color online). Single plaquette plots. (a) Graphs of
hE1ðgÞi. Black—the calculation of Ref. [5]—small coupling
approximation for regular Abelian Kogut-Susskind theory.
Blue—exact calculation for the truncated theory (tKS), for l ¼
1; . . . ; 20. Red—exact calculation for the spin-gauge theory (SG),
for l ¼ 1; . . . ; 20. It can be seen that the curves start to merge
for a small g and l. The value 1 refers to the flux tube and 3

4 to

the longitudinal part. (b) Graphs of PlðgÞ, for l ¼ 1; . . . ; 20.
It can be seen that even for small values of l, PlðgÞ approaches
1 for a small g. (c) The one plaquette system we use in the
demonstration.
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Simulating the l ¼ 1 SG Hamiltonian.—Let us consider
a 2D square optical lattice [21], whose minima coincide
with the links of the square lattice of the SG Hamiltonian
(the generalization to a 3D spatial lattice is straightfor-
ward). Each minimum is populated by a single atom of
three different atomic levels, forming a l ¼ 1 spinor [see
Fig. 2(a)]. We use it to develop an effective theory [22],
which manifests confining flux tubes similar to the ones in
CQED. We first turn to the derivation of an effective
generalized spin-1 XXZ Hamiltonian on this lattice.

The Hamiltonian describing the dynamics of three
atomic species � 2 fþ; 0;�g on such an optical lattice

contains same-species tunneling terms along the 1̂, 2̂
directions and the diagonal directions as well, and on-site
spin and number dependent terms. A pictorial representa-
tion of the interactions can be found in Fig. 2(a), and a
more detailed description of the lattice structure and the
optical potential can be found in the Supplemental Material
[23]. Generalizing from [20] we obtain the Hamiltonian:

H ¼ �X
n;�

ðts�ðayn;�anþ1̂;� þ byn;�bnþ2̂;�Þ þ td�ðayn;�bn;�

þ ayn;�bnþ1̂;� þ byn;�anþ2̂;� þ ay
nþ2̂;�

bnþ1̂;�Þ þ H:c:Þ

þ X
n;k;�

�k
n;�N

k
n;� þUo

2

X
n;k

Nk
nðNk

n � 1Þ

þU2

2

X
n;k

ð ~Sk2n � 2Nk
nÞ; (2)

where for horizontal links the annihilation operators are

an;�, and the number operators are N1
n;� ¼ ayn;�an;�, and

for vertical links �bn;� and N2
n;� ¼ byn;�bn;�; Nk

n ¼P
�N

k
n;� and ~Skn is the total on-site spin (see Ref. [20]).

We set the parameters �k
n;� ¼ �

2 þ 2�þ�	 2�ðqn þ
qnþk̂Þ, �0 ¼ 0, with � � U0; U2, � � � � U0, U2, and

qn being integer C numbers which will be later related to
the static charges. We also introduce a new variable z,
satisfying U2 ¼ zU0.
Derivation of a generalized XXZ Hamiltonian.—The

first effective calculation, which leads to a generalized
XXZ model, is similar to the one in Ref. [20]. Because the
U local terms are much larger than the others, it is reason-
able to obtain, perturbatively, an effective Hamiltonian
around them [22]. Unlike in Ref. [20], we do not include
the small local terms

P
n;k;��

k
n;�N

k
n;� in the constraining

part of the Hamiltonian, but rather treat them as the first
order contribution to the effective Hamiltonian. We divide
that into two parts: one is the �,�, qn dependent part, which
we put aside at the moment; The other � dependent part will
be used to construct ‘‘two-site’’connected local diagonal
Hamiltonians: the energy contribution of this part from
each link will be equally distributed among the six connec-
tions it has with other links (to which it is connected by
tunneling).

The tunneling rates are chosen to be real: tsþ ¼ ts� ¼
tdþ ¼ td� ¼ 1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U0ð24��5	Þð	þ24�Þ

6	

q
, ts0 ¼ 0, td0¼�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3U0ð24��5	Þ
2	ð	þ24�Þ

q
,

where �2

U0
, �

2

U0
� 	 � � � � and td0 � td�. Finally, we set

� ¼ �12�� 	 and z ¼ 1
4 � 6�

	 . Then we can apply the

effective calculation as in Ref. [20]. Collecting these
results with the �, �, qn dependent part, we get, up to a
constant energy, the first effective Hamiltonian,

Hð1Þ
eff ¼2�

X
strþdiag

Lz;nLz;n0 þ�
X
diag

ðLx;nLx;n0 þLy;nLy;n0Þ

þX
n;k

ðð2�þ�ÞðLk
z;nÞ2�2�ðqnþqnþk̂ÞLk

z;nÞþOð	Þ;

(3)

where the z� z interactions are between links that share a
vertex and the x� x,y� y only between links that share
both a vertex and a plaquette [see Fig. 2(a)]. This is an
example of a frustrated XXZ model Hamiltonian, which is
of interest of its own. One can easily check that the scale
hierarchy is not violated.
Imposing gauge invariance on the system.—In the sec-

ond step, we employ the method of Ref. [18]. Define cn �
1ffiffi
2

p L1�n, dn � 1ffiffi
2

p L2�n, Gn�L1
z;nþL2

z;nþL1
z;n�1̂

þL2
z;n�2̂

,

and rewrite the effective Hamiltonian as

Hð1Þ
eff ¼ �

X
n

ðGn � qnÞ2 þ�
X
n;k

ðLk
z;nÞ2

þ 2�
X
diag

ðcyndn0 þ H:c:Þ � HG þHE þHR; (4)

which is similar to the Hamiltonian obtained by us pre-
viously [18,24] and from which, due to the scale hierarchy
� � �, �, we shall obtain an effective Hamiltonian as in

(a)
(b)

(c)

FIG. 2 (color online). (a) The simulation lattice. As explained
in the text, the atoms (yellow circles) are aligned along the links
of a 2D square lattice, with basis vectors 1̂ and 2̂. On the blue
(horizontal/vertical) lines the tunneling rates between neighbor-
ing atoms are ts� [in Hamiltonian (2)], and on the red (diagonal)
lines—td�. In Hamiltonian (3), z� z interaction is between
nearest neighbors along both the red and blue lines, and x� x,
y� y interactions are only along the red ones. (b) The flux tube
(zeroth order in perturbative expansion, in the strong limit of the
Kogut-Susskind Hamiltonian) connecting two opposite charges.
(c) The flux tube in the language of our simulating system.
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Ref. [18]. The constraint will be HG (Gauss’s law), and its
ground sector contains the states of relevance for us. HE

commutes with it and hence becomes the first order of the
effective Hamiltonian, and from HR we get two contribu-

tions: one is the gauge-invariant plaquette term HB ¼
� 8�2

�

P
m;nðcynþ2̂

dnc
y
ndnþ1̂ þ H:c:Þ. The other one is due

to the finiteness of the angular momentum representation
matrices, but it is diagonal (and hence gauge invariant) and
thus introduces a negligible first order correction to the
energy but does not change the zeroth order ground

state (the flux tube): H0
B ¼ � 2�2

�

P
diagðjþihþj þ j0i


h0jÞn � ðj0ih0j þ j�ih�jÞn0 . Note that as l ! 1 (in a trun-
cated Kogut-Susskind theory), these terms approach iden-
tity matrices and act as an ignorable constant energy, and
hence this term did not appear in the infinite case. An
example for the emergence of gauge invariance as the
constraint gets stronger is illustrated in Fig. 3.

Next we perform the change of variables [18]: Lk
z;n !

ð�1Þn1þn2Lk
z;n,�

k
n ! ð�1Þn1þn2�k

n, andQn�ð�1Þn1þn2qn
(which also swaps the L� operators on odd vertices). This
change of signs is needed in order to get the correct signs
for the Gauss’s law constraint and the interactions of the
SG Hamiltonian. Plugging it into the effective Hamiltonian
we get

Hð2Þ
eff ¼ �

X
n;k

ðLk
z;nÞ2 þHB þH0

B (5)

and if we rescale the energy, using � ¼ 2
g2
� ¼ 16�2g2

� , we

get that ��1Hð2Þ
eff is the l ¼ 1 SG Hamiltonian Eq. (1) plus

the irrelevant term of ��1H0
B. Hence, because of the sign

inversions between the SG and the simulating models, the
manifestation of an electric flux tube between two confined
static charges, to zeroth order, will be a line of alternating
þ, � states of the atoms along the links connecting the
two charges [see Fig. 2(c)]. Some specific suggestions for
initial state preparation and possible measurements are
presented in the Supplemental Material [23].
In this Letter, we have presented a new method to

simulate CQED using ultracold atoms in optical lattices.
We believe that this method may be experimentally acces-
sible in the near future. Although we have constructed a
realization of H1, which allows for simulation of confine-
ment around the strong coupling limit, the rapid conver-
gence of Hl to the Kogut-Susskind model suggests an
avenue towards the simulation of the nonperturbative
effects of the weak coupling limit as well as phase tran-
sitions in 3þ 1 dimensions. It would be intriguing to study
the inclusion of dynamic matter fields in the model, which
would lead to a full simulation of CQED.
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