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We analyze the use of a driven nonlinear cavity to make a weak continuous measurement of a dispersively

coupled qubit. We calculate the backaction dephasing rate and measurement rate beyond leading-order

perturbation theory using a phase-space approach which accounts for cavity noise squeezing. Surprisingly,

we find that increasing the coupling strength beyond the regime describable by leading-order perturbation

theory (i.e., linear response) allows one to come significantly closer to the quantum limit on the

measurement efficiency. We interpret this behavior in terms of the non-Gaussian photon number fluctuations

of the nonlinear cavity. Our results are relevant to recent experiments using superconducting microwave

circuits to study quantum measurement.
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Introduction.—There is considerable interest in exploiting
continuous weak quantum measurements for the detection
of fundamental quantum behavior as well as for quantum
information processing [1–3]. By weak measurement, we
mean the generic situation where the signal produced in the
detector by the measured system is small compared to intrin-
sic output noise, and thus information is obtained only gradu-
ally in time. Such measurements are ultimately constrained
by the Heisenberg uncertainty principle, which dictates that
the backaction disturbance of the system by the detector
cannot be arbitrarily small, but is instead bounded by the
rate at which information is acquired [1–5]. Detectors
capable of yielding an optimally small ratio of backaction-
to-information gain are known as quantum limited. They are
both of fundamental interest, and are also necessary if one
wishes to implement continuous quantum feedback algo-
rithms [6–8] or certain quantumerror correction schemes [9].

Not surprisingly, weak measurements are usually ana-
lyzed in the limit of a system-detector coupling small
enough that leading-order perturbation theory in the cou-
pling applies; in this standard regime, the quantum limit
reduces to a constraint on the noise properties of the detector
[3,4]. Here, we focus on an alternate regime, where the
detector-system coupling is still weak enough that informa-
tion is obtained gradually in time, but not so weak that
leading-order perturbation theory is sufficient. This regime
of a ‘‘weak-but-not-too-weak’’ measurement has recently
been achieved in experiments using a driven, nonlinear
superconducting microwave cavity to measure the state of
a superconducting qubit [10]. As with experiments using
linear microwave cavities [11,12], the qubit is dispersively
coupled to the cavity, meaning that the cavity frequency
depends on the qubit state; by monitoring the phase of
reflected microwaves from the cavity, one can monitor the
qubit state. Introducing a nonlinearity in the cavity via a
Josephson junction (see Fig. 1) allows one to operate the
cavity detector close to a point of bifurcation, where the
state of the driven cavity is an extremely sensitive (but still

single-valued) function of its frequency. The enhanced
sensitivity of this regime naturally leads to conditions where
the measurement is weak, but the qubit-detector coupling
cannot be treated perturbatively. While information gain is
enhanced here, the question remains whether this speedup
comes at the cost of deviating from the quantum limit
(i.e., excess backaction dephasing).
In this Letter, we present an analytic theory describing

weak measurement of a qubit with a nonlinear cavity oper-
ated close to a point of bifurcation. Our nonperturbative

FIG. 1 (color online). (a) Inset: schematic showing one pos-
sible realization of a Josephson-junction circuit (i.e., nonlinear
cavity) dispersively coupled to a qubit. Main: Measurement rate
and dephasing rate versus qubit coupling strength �, in units of
the cavity damping rate �, using logarithmic axes. The blue (dot-
dashed) curve is the full measurement rate �meas, while the light-
blue (dotted) curve is the linear-response approximation to �meas.
The red (solid) line is the dephasing rate �’ as obtained from the

full theory presented in the main text. The remaining lines are �’

calculated within less rigorous approximations: the grey (short-
dashed) curve is the linear-cavity formula �’;0 [cf. Eq. (5)] and

green (long-dashed) curve is leading-order perturbation theory.
Parameters are � ¼ 10�3�; f0 ¼ 0:75fbif ; �n� 200;� ¼ �bif

where fbif and �bif are the driving force amplitude and detuning
at the cavity bifurcation. The parametric photon number gain
is G� 102. One clearly sees that for moderate couplings, the
dephasing rate is strongly suppressed compared to the perturba-
tive result. (b) Same, but using linear axes.
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approach accounts for the nontrivial cavity noise physics
associated with the nonlinearity. We find that the
information-gain to state-disturbance ratio is a strong func-
tion of the qubit-detector coupling strength. In the limit of
an extremely weak qubit-detector coupling, we recover
previous perturbative results [13–16], which indicate a large
deviation from the quantum limit: the backaction dephasing
rate is a large factor G greater than the rate of information
acquisition (the measurement rate), where G � 1 is the
parametric photon-number gain associated with the driven
nonlinear cavity (i.e., a single signal photon incident on the
detector will result inG photons at its output). Increasing the
coupling beyond the perturbative regime, we find remark-
ably that the dephasing rate is greatly suppressed compared
to the leading-order prediction. This allows one to approach
the quantum limit to within a factor of order unity. Our
approach provides a general framework for investigating
quantum measurement with driven nonlinear systems
beyond weak coupling.

Note that the backaction of a nonlinear cavity detector
was also considered by Boissonneault and co-workers
[10,15,16]. They described backaction dephasing beyond
lowest-order in the coupling by approximating the state of
the driven cavity state conditioned on the qubit state to be a
simple coherent state; this is only valid for operating points
far from a bifurcation, where the detector has a relatively
small gain. We show that close to a bifurcation (where the
cavity exhibits parametric gain and squeezing), this ap-
proach does not accurately capture the coupling depen-
dence of the backaction dephasing.

Model.—We consider a qubit coupled dispersively to a
single-sided nonlinear cavity. While our approach applies
to an arbitrary nonlinearity, we focus here on the typical
experimental situation [10,17] where a Kerr-type nonline-
arity dominates. Working in a frame rotating at the cavity
drive frequency !d, the Hamiltonian is (@ ¼ 1)

Ĥsys ¼ ��âyâ��âyâyâ âþĤ� þ Ĥqb þ Ĥint; (1)

where � ¼ !d �!cav is the detuning between the cavity

drive and resonance frequency, � is the Kerr constant, Ĥ�

describes the cavity damping (with rate �) and driving

due to coupling to external modes, and Ĥqb ¼ ��̂z is the

qubit Hamiltonian. The dispersive quantum nondemolition

qubit-cavity coupling Hamiltonian is Ĥint ¼ ��̂zâ
yâ,

where the coupling strength � sets the qubit-dependent
cavity frequency shift. We will take the cavity to be at
zero temperature, and ignore any intrinsic qubit dissipa-
tion, as we are interested only in the measurement
backaction.

As discussed, making a weak �z measurement of the
qubit involves strongly driving the cavity while monitoring
the reflected light from the cavity via a homodyne mea-
surement; the two possible values of �z will lead to two
different average homodyne currents, which as time pro-
gresses can be resolved above the intrinsic noise in these

currents [3,12]. We will focus exclusively on a weak
nonlinearity � � � and a strong drive amplitude, such
that the stationary average cavity photon number hâyâi�1
regardless of the initial qubit state. Apart from this con-
straint, we will not place any other restrictions on how
small the qubit-cavity coupling � must be.
Dephasing rate.—We first calculate the backaction

dephasing of the qubit that occurs during such a measure-
ment; this dephasing is a direct consequence of the intra-
cavity photon-number fluctuations. If the qubit is initially
in a �z eigenstate, it will remain in this state (due to the
quantum nondemolition nature of the measurement); thus,
from the cavity’s perspective, the two qubit eigenstates
simply correspond to a shift of the cavity resonance
frequency by either ��. In each case, the classically
expected cavity amplitude �� (� ¼"; # ) will be given
by [14,16]

�
��

2
þ ið�� �þ 2�j�"=#j2Þ

�
�"=# ¼ �if0; (2)

where f0 is the amplitude of the cavity drive. Note that we
focus on driving strengths small enough that we are below
the bifurcation; i.e., there is only one classical solution �

for a given �. By now, writing â ¼ d̂þ �� and using the
fact that j��j � 1, we can approximate the cavity
Hamiltonian corresponding to each qubit eigenstate by

only keeping terms that are at most quadratic in d̂; d̂y.
We thus obtain two linearized cavity Hamiltonians, corre-
sponding to the two qubit states. Each has the general
form of a degenerate parametric amplifier driven by an
off-resonant pump [14,18,19]:

Ĥ� ¼ �~��d̂
yd̂þ i

2
ð~g�d̂yd̂y � ~g��d̂ d̂Þ; (3)

where ~�"=# ¼ �� �þ 4j�"=#j2� is the effective pump

detuning, and ~g� ¼ 2i�2
�� is the parametric strength. As

one approaches a point of bifurcation in the cavity (e.g., by
increasing the drive strength f0), the corresponding degen-
erate parametric amplifier Hamiltonian approaches the
threshold of self-oscillation [14] (see inset of Fig. 2). For
such operating points, incident waves on the cavity in the
appropriate quadrature will be strongly amplified; this
amplification is described by a photon number gain G
which diverges as one approaches the bifurcation, as well

as a narrow bandwidth �slow � �=
ffiffiffiffi
G

p
[14,17,19].

While the cavity evolution is easy to understand when
the qubit is initially in a �z eigenstate, to calculate the
dephasing rate we need to understand the cavity dynamics
when the qubit is in a superposition of its eigenstates. We
focus on the long-time qubit dephasing rate, which is
defined as usual in terms of the decay of the qubit’s off-
diagonal density matrix elements in the long-time limit:
�j lnTrð�̂j#ih" jÞj=t ! �’, where �̂ is the density matrix

describing the full system.
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To proceed, we first introduce �̂"# ¼ Trqb;bathð�̂j #ih"jÞ,
where the trace is over the qubit and cavity bath degrees of
freedom. This is an operator acting in the cavity Hilbert
space; its trace yields the off-diagonal element of the qubit
density matrix, and hence can be used to obtain �’. We

further transform �̂"# by displacing away the two stationary
classical cavity amplitudes �� associated with each qubit

state. We thus obtain an operator ~̂�"#:

~̂�"#ðtÞ � D̂ð��"Þ�̂"#ðtÞD̂yð��#Þ; (4)

where D̂ð�Þ ¼ expð�ây � H:c:Þ is the cavity displacement
operator. One can show that in the long-time limit, the

exponential decay of Tr ~̂�"#ðtÞ also yields the dephasing rate
�’ [20].

It is now straightforward to rigorously derive the evolu-

tion equation of ~̂�"#, starting from the standard Linblad

master equation describing the evolution of the cavity-
plus-qubit density matrix [20] (see also Ref. [16]):

@

@t
~̂�"# ¼ �D½d̂	 ~̂�"# � iðĤ" ~̂�"# � ~̂�"#Ĥ#Þ � �’;0 ~̂�"#

þ �½ð�" � �#Þ ~̂�"#d̂
y � ð��

" � ��
# Þd̂ ~̂�"#	: (5)

Here D½d̂	 ~̂�"# ¼ d̂ ~̂�"#d̂
y � ðd̂yd̂ ~̂�"# þ ~̂�"#d̂

yd̂Þ=2 is the

standard Lindblad superoperator describing cavity damp-
ing. The second and third terms in Eq. (5) correspond to the
Hamiltonian evolution of the cavity in our doubly-
displaced frame, where we have used j��j � 1 to linearize

the two cavity Hamiltonians Ĥ� [cf. Eq. (3)]. The remain-
ing terms on the rhs of Eq. (5) describe decoherence of the
qubit resulting from the combination of the cavity drive
and cavity dissipation, with �’;0 ¼ ð�=2Þj�" � �#j2.
For a linear cavity, the terms on the last line of Eq. (5) play

no role, and the backaction dephasing rate is given com-
pletely by �’;0 (i.e., by the distinguishability of the two

classical cavity amplitudes) [21]. For our case of a nonlinear
cavity, the same is true if one neglects the parametric ampli-

fication terms in Ĥ� (proportional to d̂2 and ðd̂yÞ2), as then
~̂�"#ðtÞ ¼ C expð��’;0tÞj0ih0j (where j0i is the vacuum state

and C a constant) trivially solves Eq. (5). This is equivalent
to finding that (for long times) the cavity state conditioned
on the qubit is a coherent state j��i. In this approximation,
the backaction dephasing rate is given completely by the
linear-cavity formula �’;0 [10,15,16]. However, such an

approximation completely neglects the squeezing of noise
by the nonlinear cavity. It is thus only valid for cavity
parameters extremely far from any bifurcation, in regimes
where the nonlinear cavity closely resembles a linear cavity.
Given the importance of noise squeezing, we go beyond

the above approximation by retaining all terms in Eq. (5).

Defining �ðtÞ ¼ � lnTr ~̂�"#ðtÞ, the long-time backaction

dephasing rate will be given by �’ ¼ limt!1Re�ðtÞ=t.
Setting �� ¼ �" � �#, the trace of Eq. (5) yields

_� ¼ �’;0 � ihĤ" � Ĥ#i"# þ �h�� 
 d̂y � H:c:i"#; (6)

where we have defined the quasiexpectation value hÔi"# ¼
TrðÔ ~̂�"#Þ=Trð ~̂�"#Þ. As ~̂�"# is not a true density matrix, the

quasiexpectation of a Hermitian operator can be complex,
and hence the second and third terms above can contribute
to the backaction dephasing.
We now use the fact that Eq. (5) only involves terms that

are at most quadratic in d̂,d̂y, and hence can be solved

exactly by a ~̂�"# which has a Gaussian form (i.e., its phase

space representation is Gaussian [20]). Equation (5) thus
reduces to a closed set of evolution equations for the

quasimeans and covariances of d̂; d̂y (see Ref. [20] for
details). Solving these and substituting into Eq. (6) directly
gives _� and thus the dephasing rate. We stress that this
approach is not perturbative in the coupling �, and it does
not neglect the noise squeezing expected near a cavity
bifurcation. A similar procedure can be used to calculate
the backaction dephasing of a linear cavity subject to both
quantum and thermal noise [22].
To gain insight on the effect of increasing �, we first use

the above approach to calculate �’ to order �4. For a cavity

detuning� and drive f0 chosen to be close to the bifurcation
point, one finds

�’ ’ G

�

�
2

3
�2 �nþ �2G3=2

9
� 32

27

�4 �nG3

�2
� 5

81

�4G9=2

�2

�
; (7)

where �n ¼ j�0j2, �0 is the zero-coupling classical cavity
amplitude (i.e., solution to Eq. (2) at � ¼ 0), and G � 1 is

FIG. 2 (color online). Measurement efficiency ratio ��
�meas=�’ as a function of coupling strength for the same

parameters as Fig. 1 (G ¼ 102, red solid curve), and for an
operating point closer to the bifurcation yielding G� 103 (blue
dashed curve); the quantum limit is � ¼ 1 (dashed black line).
Vertical lines indicate the maximum � for which the measure-
ment time 1=�meas is longer than the detector response time
1=�slow � ffiffiffiffi

G
p

=�. For � ! 0, one misses the quantum limit by a
large amount: �� 1=G. However, a small increase in coupling
greatly improves this efficiency ratio. Inset: Average cavity
photon number versus drive detuning � (parameters as in
Fig. 1). The black point indicates the chosen working point.
The two qubit states lead to two different effective values of �;
these are shown as white circles for � ¼ 0:05�.
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the parametric photon-number gain (see Ref. [14]). At each
order in �, we have retained the leading terms in �n and G.
The first term here ( / �2 �n) reproduces the results of
Refs. [10,14,16] and arises solely from the linear-cavity
dephasing rate �’;0 in Eq. (6). The second term in Eq. (7)

(also order �2) is missed if one linearizes the qubit-cavity
interaction, or makes the approximation �’ ¼ �’;0. More

interesting are the �4 terms in Eq. (7). Surprisingly, these
corrections are negative, suggesting the possibility of a
relative suppression of dephasing with increased coupling
(relative to the lowest-order-in-� expression). The leading
�4 corrections are completely due to the last line of Eq. (5),
terms that would vanish if one ignored the squeezing of
noise near the bifurcation. As such, the approximation
�’ ’ �’;0 would predict both an incorrect sign and scaling

with G of this term.
To see the full consequence of this behavior, we numeri-

cally solve Eq. (6) and the ordinary differential equations
determining the needed averages; we use parameters cor-
responding to a weakly nonlinear cavity operated near a
bifurcation point, similar to those realizable in experiment
[10,17], and well within the regime of validity of our
theory. In Fig. 1, one sees clearly that the backaction
dephasing rate as a function of coupling (red) drops mark-
edly below both the expectations from lowest-order per-
turbation theory (green), and below the linear-cavity
formula �’;0 (grey). We have confirmed that this behavior

is generic whenever one is close to a bifurcation in the
cavity: higher-order-in- � terms yield a marked suppres-
sion of the dephasing rate.

For further insight into the above behavior,we return to the
physical picture that qubit dephasing is due to the photon-
number fluctuations of the driven cavity. Treating these
fluctuations classically and defining mðtÞ � R

t
0 dt

0nðt0Þ
(where n is the cavity photon number), one finds that the
off-diagonal qubit density matrix is directly proportional to
the characteristic function of the probability distribution of
m [23,24].As such, the long-time qubit dephasing rate can be
expressed in terms of the even cumulants ofm, hhm2jii:

�’ ¼ lim
t!1

1

t

X1
j¼1

ð�1Þj�1 ð2�Þ2j
ð2jÞ! hhm2jii: (8)

This expansion also holds in the quantum case where m̂ is an
operator, if one now interprets the cumulants above using
the standard Keldysh operator ordering [23,24].

Equation (8) implies that terms of order �4 and higher in
�’ are due to the non-Gaussian nature of intracavity photon

number fluctuations. As shown in Eq. (7), the relative sup-
pression of �’ with � is already presaged by the negative

sign of the �4 term. From Eq. (8), we see that this implies a
positive kurtosis, hhm4ii> 0. Even a driven linear cavity in
the classical limit has non-Gaussian intracavity photon
number fluctuations and a positive kurtosis; this is because
n is the square of a Gaussian random variable, the cavity
amplitude [24]. A positive kurtosis signals a distribution

which is more peaked than a Gaussian, and hence noise
that generates less dephasing than Gaussian noise. In our
nonlinear resonator, the non-Gaussian nature of the photon
number fluctuations is strongly enhanced near bifurcation
by the intrinsic nonlinearity of the system. hhm4ii remains
positive (like a linear resonator), but ismuch larger than even
that of a degenerate parametric amplifier near threshold [20].
Measurement rate and quantum limit.—For a measure-

ment that occurs slowly on detector time scales, we can
characterize the information gain of the measurement by a
single measurement rate �meas: how quickly do the distribu-
tions of the output homodyne current corresponding to
each qubit eigenstate ( " or # ) become distinguishable.
Generalizing the standard weak-coupling expression [1–3]
to a situation where the coupling is not perturbative but
the measurement is still slow compared to internal detector
timescales, we find (see Ref. [20] for details)

�meas ¼ ð �I" � �I#Þ2=½4ðSII;" þ SII;#Þ	: (9)

Here �I� is the average stationary homodyne currentwhen the
qubit is in the state � ¼"; # , and similarly, SII;� is the zero-

frequency spectral density of homodyne current fluctuations
when the qubit is frozen in the state �. One can rigorously
show that for arbitrary �, the measurement efficiency ratio
� ¼ �meas=�’ � 1 [20].

Using the linearized Hamiltonians Ĥ� given in Eq. (3)
along with standard input-output theory [25] lets us evalu-
ate Eq. (9) for an arbitrary value of the coupling; compar-
ing against the dephasing rate then allows us to investigate
the behavior of � as a function of coupling. One finds that,
similar to the linear-cavity dephasing rate �’;0, the mea-

surement rate is largely determined by the classical ampli-
tudes ��, and is hence a far weaker function of � than the
dephasing rate. The result is that there is a range of �where
higher-order terms significantly suppress the dephasing
rate (over the perturbative expression), whereas the mea-
surement rate is still determined by the leading-order
expression [see Fig. 1(a)].
Shown in Fig. 2 is� versus� for the same parameters as in

Fig. 1. In the limit of a vanishing coupling strength, one
deviates strongly from the quantum limit [14]. However,
the effective suppression of dephasing that occurs with a
modest increase of coupling brings one within a factor of
order unity of the ultimate quantum limit bound � ¼ 1. We
find that this behavior is generic for cavity operating points
near bifurcation: increasing the coupling � beyond the
validity of leading-order perturbation theory allows one to
make a weak measurement with a much higher efficiency
than in the extremeweak coupling limit. On a physical level,
this is a direct result of the non-Gaussian nature of photon
number fluctuations in the driven cavity (namely, the large
positive kurtosis).
Conclusions.—We have described a general method to

calculate the measurement and dephasing rate of a qubit
coupled to a nonlinear resonator that is not perturbative in
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the qubit-detector coupling and which accounts for cavity
noise squeezing. By increasing the coupling to a regime
where higher-order corrections are relevant, one can come
significantly closer to the fundamental quantum limit on
weak continuous qubit measurement.
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